

Transformational ML-Based Approach to Tackle Severe FPGA

Placement and Routing Failures

Hichem Belhadj, Plunify Inc.

165, University Street, Palo Alto, CA

Hichem.Belhadj@plunify.com

Abstract

lacement and routing failures during the FPGA backend flow are frequent with many FPGA designs especially when

these involve multiple physical constraints. This paper introduces the Machine-Learning-based approach implemented in

InTime toolset to transform these failures to a less complex problem of timing convergence. Thanks to machine learning,

InTime can identify the root causes of the placement or the routing failures, mitigating them through adjustment of the

user constraints, and setting the various options making the design placement and routing friendly. As the experimental

results illustrate, the encountered placement and routing failures are all resolved. Additionally, timing requirements are

met for over 85% of the case through this ML-based transformation. The other 15% of the designs are processed

through the traditional InTime recipes to resolve timing convergence.

Introduction
FPGA designers face several types of failures while processing their designs. While most of these

challenges are related to meeting the timing requirements, routing failures occur in many instances

due to inherent or artificial congestion. Placement failures while less frequent than routing failures do

occur in 5 to 10% of the FPGA designs when complex and numerous physical constraints are

associated with these designs. Regardless of the root cause, the impact of these failures on the

schedule of the projects, the human resources allocation, and the overall cost is not only high but

also unpredictable.

The paper is organized in 4 sections: the first covers the inherent and artificial root causes of

placement and routing failures, while the second section introduces the ML-based approach to

radically tackle these failures. The third section provides actual results on real life designs. The final

section summarizes the takeaways and introduces new venues Plunify is exploring to further the

improvements of the outcome in terms of QoR (quality of results) and enhancement of the

predictability of the schedule and human and compute resources allocation.

 Whitepaper

1. Inherent and Artificial Root Causes of Placement and Routing Failures

While dealing with FPGA design’s challenges, designers are frustrated with the lack of predictability of

the results and with the lack of hints the tools provide to solve these challenges. This frustration is at its

highest level when these failures are placement or routing failures. In this section, the focus is on

identifying the root causes that yield these challenges.

Among the main sources of the placement and routing challenges one can list the following:

i. High congestion level inherent to the design where the routing needs are extremely high

compared to the actual logic used. For instance, large crossbar, deep CRC, large Mux/Demux, or

designs with large busses between hierarchical blocks exhibit high congestion level inherently.

ii. High utilization of various resources including logic cells, embedded resources such as RAM,

DSP, or high-speed IO blocks, clocking resources, and User IOs.

iii. Large number of high fanout nets that drive logic across multiple hierarchical blocks and/or IOs.

iv. Poor placement that artificially causes interacting hierarchical blocks to be placed in far away

location of the die or even in adjacent of no adjacent dies in a multi-die FPGAs.

v. Poor routing may artificially cause fights over routing resources and could yield either artificial

high congestion or unsuccessful routing such as high number of open nets or overlapping nodes.

vi. User constraints that separately may make sense but combined makes it hard for the backend

toolset to place or to route the design. While timing constraints may cause the tools to choke on

parts of the design due to their aggressive nature, physical constraints such as placement or

floorplan requirements could be even harder to honor and usually lead to tools failure when the

number of these physical constraints is high.

InTime, the Plunify ML-based toolset [1], distinguishes between the class of root causes i, ii, and iii and

consider them inherent to the design profile and the class of root causes described in iv, v, and vi above

and we call them artificial root causes. InTime recipes such as “Hot Start”, “InTime Default”, “SSI

Exploration”, “Extra Opt” recipes tackle the design inherent structural challenges [2]. The new Auto-ML

approach provides a new recipe implemented in the new InTime release focuses on resolving the artificial

root causes of placement and routing failures.

2. Auto ML-Based Approach to Tackle Placement and Routing Failures

Ultimately, the goal is to resolve primarily the placement and/or the routing failures and to transform the

design and associated constraints to a timing convergence issue that InTime has a track record of

resolving. It is a transformation from what is conventionally called “red ocean” to “blue ocean” type of

problem as illustrated in the figure 1 below.

Figure 1: Transformational Auto ML-Based Approach Tackling Complex Placement and Routing

Failures.

While sophisticated, the auto ML-based approach derives its strength from the learning it acquires from

the in-depth analysis of the design profile as well as the “adequacy” of the physical and timing

constraints. The concept of “adequacy” is a holistic profiling of the constraints that not only considers

each constraint separately, but also the overall impact of the combination of these constraints. Added to

the profiling, InTime uses the contextual ML-based insight relative to the FPGA architecture, the

specifics or the die/package combination, and the characterization of the release of the FPGA vendor

tools to derive adjusted set of timing and physical constraints that transform the design and associated

constraints to be a lot more placement and/or routing friendly.

Moreover, the newly context-aware generated constraints are limited in number to reduce the need for

compute resources and shorten the overall compile time. To illustrate this statement, floorplan

constraints define regions where functional block or portions of the design need to be assigned to or

placed. The shape and size of these regions (pblocks in the Vivado terminology of constraints) matter

and there are several combinations. Limiting the number of combinations of size/shape of these regions

(or pblocks) and ensuring successful placement and routing is a paramount to reducing the compile time

and the compute resources required for the parallel jobs InTime spawns to run concurrently.

This approach turned out to be highly effective and efficient in the sense it also contributes to the

resolution of severe timing challenges while keeping the overall compile time and compute resources

usage reasonable.

3. Auto ML-Based Approach Experimental Results

The proposed approach has been put to task on several real-life designs coming from HPC (high

performance compute), storage, test and measurement, comms., and accelerated trading applications. The

illustrative yielded results are split in 2 categories:

• Designs with routing failures

• Designs with placement failures

RED OCEAN

Design with Placement &

Routing Issues

BLUE

OCEAN

Auto

ML-

Based

Approa

Timing

Convergence Issues

3.1. Experimental Results for Designs with Routing Failures
The Table 1 presents the various benchmarks, the associated end application, as well as the actual

failure and the relative error message. Most of these designs are complex and with high utilization,

and the associated timing and physical constraints are stringent to say the least. The newly introduced

Auto ML-based recipe yielded a complete resolution of the routing failures for all these benchmarks

except for two designs, highlighted in yellow, where the routing failure has been drastically tamed

with the new recipe. Additionally, the timing requirements were met for sixteen (16) out of the

eighteen (18) processed designs and within very reasonable compile time as opposed to a manual and

iterative approach based on changes of RTL, physical or timing constraints, or tools’ settings that will

consume an order of magnitude more time and compute resources and adds a tremendous pressure

on the designers involved in this optimization effort and their managers.

Table 1: Efficiency and Effectiveness of Auto-ML on Routing Failures

3.2. Experimental Results for Designs with Placement Failures
Table 2 presents the various benchmarks, the associated end application, as well as the actual

placement failure, and the results obtained using the new InTime recipe.

Table 2: Efficiency and Effectiveness of Auto-ML on Placement Failures

A brief exploration of the data provided in Table 2 demonstrates that the Auto ML-based recipe

solved not only the placement and routing problems for all the designs, but also met the timing

constraints associated with half of the considered benchmarks.

4. Final Look and Ongoing Near Future and Mid-Term Development

To put things in a broader context, previous releases of InTime, the ML-Based toolset, were focused and

successful at talking the complex problem of timing convergence with several underlying technologies as

illustrated in Figure 2.

Figure 2: Previous Focus of InTime and Underlying Technologies to Achieve Timing Closure

The newly developed auto ML-based approach and associated recipes expanded the scope and the

complexity of issues encountered by an increasing number of designs spanning across multiple

applications pushing the performance envelope. Figure 3 provides an overview of the underlying

technologies that enables a successful outcome when tackling placement and routing failure

regardless of their severity.

Figure 3: The New Agile InTime with Embedded Auto-ML and Underlying Technologies

The experimental results obtained on many real-life and complex designs and their associated

stringent constraints illustrate the effectiveness of this approach. The compile time and the compute

resources deployed during these experiments show the efficiency of using the resources and the short

cycle-time to achieve not only successful place and route but also meet the stringent constraints.

Ongoing development is underway to further the improvement of the quality of results, the ease of

use, and broadening the scope of InTime to tackle new problems such as optimizing designs power

consumption while tackling timing convergence failures.

For the latest product information, please contact or visit www.plunify.com

About Plunify

Plunify helps businesses and organizations build better FPGA products. Our solutions enable shorter
time-to-market, better design processes and predictable outcomes. Hardware and software developers
can focus on delivering their FPGA-based applications without worrying about infrastructure and tools.

Email: tellus@plunify.com

Address: 165, University Street, Palo Alto, CA

http://www.plunify.com/
mailto:tellus@plunify.com

