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Introduction 
With advancements in FPGA architectures and technology, FPGA designs are getting more 
and more complex. The growing prevalence of high-speed interfaces, mixed-signal blocks 
and usage of 3rd-party Intellectual Property (IP) blocks are some of the factors that have 
exponentially increased the difficulties of FPGA timing closure. In response to these new 
challenges, the latest FPGA tools have evolved accordingly, possessing more advanced 
methodologies and better synthesis and place-and-route algorithms to handle modern designs. 
In particular, these improvements have led to new build parameters with noticeable impact on 
design performance. The other inevitable consequence is an increase in overall build time and 
in compute resource demands. With newer and larger device families, build times and tool 
memory requirements may skyrocket, leading to longer turnaround times and reduced 
productivity. 

To deal with these challenges, the InTime Design Optimizer tool is based on best practices 
and guidelines to determine the best build parameters, with the condition that the design is 
currently immutable, i.e. you cannot change your RTL or constraints. InTime uses machine 
learning principles to achieve timing closure and optimization, treating the FPGA synthesis 
and place-and-route tools as black boxes and analyzing design performance across a whole 
range of build parameter variations. 

Under the InTime Optimization Methodology, an effective build process is no longer a one-
designer-to-one-machine operation. Instead it is a systematic series of calculated steps done 
by one or many designers on multiple build machines. From the resulting analysis, InTime 
deduces and recommends good build parameters aimed at improving design performance. 
The guidelines in this document will help you achieve your performance goals in the 
minimum number of builds and fastest turnaround time possible. 

 

 

Commonly-used terms 

 Total Negative Slack (TNS): Sum of the negative slack in your design. If 0, 
then the design meets timing. 

 Worst Negative Slack (WS or WNS): The most severe amount by which 
timing fails in your design. If positive, then there are no timing failures. 
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Understanding the InTime Optimization Phases 
InTime is a software plugin that runs FPGA tools such as Intel Quartus Prime (“Quartus”) in 
the background. The FPGA tools offers many build parameters that affect an FPGA design 
on a global as well as local block level. InTime’s goal is to determine the optimum build 
parameters for the design. To deal with an enormous design space consisting of countless 
combinations of parameters, InTime uses a machine learning approach combined with 
domain-specific heuristics to predict and narrow down the best parameters. Machine learning 
is a means to converge more quickly on the optimal parameters compared to doing random 
variations. 

To maximize timing closure effectiveness, it is necessary to generate sufficient data points 
from build results and learn from past results. There are two phases to the optimization 
process: Phase 1 is the “Learning Lifecycle” and Phase 2, “Last-Mile Optimization”. 

Phase 1: Learning Lifecycle 
In this phase, the recommended InTime Optimization Methodology is to progressively 
optimize a design over several rounds of synthesis and place-&-route builds in an iterative 
“build-and-learn” lifecycle. 

Figure 1: Learning Lifecycle 

 

1. Use the current InTime database and train a machine learning model to predict 
combinations of build parameters. 

Step 1: Predict parameters 

Step 2: Run concurrent compilations 

Step 3: Learn from the results 
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2. Leverage on compute power to run multiple builds concurrently. 
3. If one or more of the builds meet timing, optimization stops and your goal has been 

achieved. 
4. Otherwise, InTime applies machine learning to learn from the build results and uses 

the updated data model for subsequent predictions. Repeat steps 1 to 4 if necessary. 
5. If there is at least one “good” result (“good” is defined in the “Moving to the Next 

Phase section”), proceed to Phase 2. 

The build optimization rounds are represented and displayed in InTime’s history window (see 
Figure 2). The entire history of compilations and their sequences is stored and saved in a 
hierarchical tree structure.  

Figure 2: History Window of InTime 

 

Each round is called a “job” and each combination of parameters is called a “strategy”. In the 

figure above, “calibrate_24” or “calibrate_19” are names of strategies, and a job, denoted by 
the red rectangle, can consist of one or more strategies. Each job has a “parent” result on 
which the strategies are based, and each new job adds a hierarchical level that branches out 
from its parent. 

Phase 2: Last-Mile Optimization 
The second phase begins when at least one of the results is close to meeting the performance 
target or if results have stopped improving in Phase 1. In the former case, the optimization 
relies on specific techniques that stimulate minor (compared to those in Phase 1) variations in 
the results. This phase consists of: 

1. Random 
Running placement seed exploration, effort levels and placement adjustments. 
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The quality of results in Last-Mile Optimization is a function of compute power. Having 
more compute power ensures that the builds finish faster. However, the key to obtaining good 
Phase 2 results is that you must first attain a sufficiently good result in Phase 1. 

Combining Phase 1 & Phase 2 
Since each round of the Learning Lifecycle (Phase 1) can produce multiple results which are 
worthy of Last-Mile Optimization (Phase 2), you can actually run both Phases together in 
parallel. It is not necessary to wait for either Phase to complete before starting the other (See 
Figure 3). 

Figure 3: Using Phase 1 in parallel with Phase 2 

 

Job 1 

Job 2 
 

“Good” Result 

A from Job 1 

Job 4 

 

Job 3 

  

Job 5 

  

“Good” Result 

B from Job 3 

 

Time                Phase 1                                                                         Phase 2 

“Good” Result 

C from Job 3 

Job 6 

  Job 7 

  

End 

Met Timing 

Start 
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InTime Optimization Process 

InTime Recipes 
Within each phase, there are multiple “recipes”. A “recipe” represents an algorithm to select 
build parameters, either through machine learning, randomly or via other methods. Each 
recipe generates one or more strategies. Different recipes are used under different conditions. 
InTime comes with four recipe categories: 

1. Learning 
2. Last-Mile 
3. General 
4. Advanced 

Firstly, use Learning recipes during Phase 1 to automatically select build parameters in light 
of all the build result data accumulated in previous rounds. Employ Last-Mile recipes when 
your design is close to meeting your timing target. General recipes include a basic script to 
build your design as is, plus a way to re-build existing strategies. Finally, Advanced recipes 
give you the flexibility to run customized strategies that can be generated outside of InTime. 

A complete list of all the recipes can be found in Appendix A.  

Recipe Selection 
For a design new to InTime, our recommended approach is to assume the absence of any data 
points and start with the “Hot Start” recipe, a Learning Lifecycle recipe. The figure below 
shows the typical optimization process of InTime for Quartus. 
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Figure 4: InTime Optimization Flow for Quartus Designs 

 

Hot Start serves multiple purposes and consists of known-good strategies as well as strategies 
distilled from your InTime database. Its first objective is to explore different parameters that 
worked well for known issues, for example congestion and high utilization in different 
FPGAs and designs. The other purpose is to generate initial data for subsequent machine 
learning rounds. 

Hot Start can also be used as a test to gauge whether or not timing closure is possible. Refer 
to the section “Possibility of Meeting Timing” 
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Parameter Selection 

Parameter effects at Different Build Stages  

The impact to results at different build stages can vary by orders of magnitude. Refer to the 
following figure. 

Figure 5: Optimization Funnel 

 

Using good synthesis parameters will generally have a larger impact on the overall design 
performance than varying routing parameters. This is especially important if your design has 
a high Worst Slack. 

Build Parameter Inter-dependencies 

The FPGA tool user guides describe in varying levels of detail what each build parameter 
does and what aspect of performance it targets. By itself, a build parameter is usually easy to 
understand in terms of why, when and how to use it. However, it is vital to understand that 
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build parameters do not operate in isolation and have complex, inter-dependent relationships 
with other build parameters.  

For example, synthesis parameter A may affect placement parameter B, or placement 
parameter B may override the effects of routing parameter C. With between 30 to 80 different 
build parameters depending on the FPGA tool, it is difficult to fully comprehend whether a 
single parameter in a particular group of parameters is good or bad. Using machine learning, 
InTime establishes a consistent and disciplined approach to deciding what is good or bad. 

The InTime Default Recipe 
The InTime Default (“Default”) recipe is the follow-up to Hot Start. In the absence of Hot 
Start, you can also use Default as your first recipe. This recipe is highly flexible. 

Multiple Rounds and Runs 

The Default recipe requires multiple rounds and will be compute-intensive. Ideally, you 
should use enough machines to complete them as quickly as possible. The default number of 
rounds is three (3) and the number of runs (strategies) per round is thirty (30). In many cases, 
more rounds are necessary due to the need for more data points. The recommended total 
number of builds is at least 100, regardless of rounds and runs. The figure below shows eight 
rounds of Default. Each round corresponds to a “job”. The green line represents the best TNS 
result for a particular round/job, and the red line shows the worst TNS for that round/job. 
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Figure 6: TNS improvements based on Default Recipe 

 

Figure 6 shows how the best result of a round can fluctuate over multiple rounds, as opposed 
to having a consistent downwards trend. This is expected in design space exploration. 

Longer Runtimes and Aggressive Build Parameter Selections 

Compared to Hot Start, Default has a wider range of parameter selections. This is necessary 
to trigger a broader variation of results to learn from. If the design’s utilization is very high, 
strategies are more likely to over-fit due to Default’s usage of more aggressive parameters. 
The other consequence of employing aggressive parameters is an increase in build runtime. 
Because overly-long runtimes tend not to result in improved timing, InTime recommends a 
maximum runtime of 2x the original build time. Maximum runtime is an InTime tool 
property that the user can specify to have builds automatically terminated beyond a certain 
elapsed time. Refer to our user guide “Set Flow Properties” for more information. 

Goal-Based Build Parameter Selection 

Default selects parameters based on your target goal, which can be “Speed-TNS”, “Area” or 
“Power” in InTime’s Flow Properties section. Note that InTime does not optimize by 
targeting Worst Slack/WNS, because the critical path responsible for WNS is usually 
different in various strategies and is generally not an apples-to-apples comparison between 
results. Better WNS is achieved as an effect of optimizing for better TNS. 

No more 
improvements 

                           Phase 1                                                                   Phase 2 

https://docs.plunify.com/intime/quickstart_vivado.html#set-flow-properties
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The Deep Dive Recipe 
Compared to Default, the Deep Dive recipe (“Deep Dive”) has a much less aggressive build 
parameter selection and is typically employed after running Default. It focuses on using 
existing good results and varying about 10-20% of those parameters. Deep Dive is also 
helpful when you are still not meeting timing after Phase 2 and need to run more rounds in 
Phase 1. 

For example, Figure 7 shows shows that by using a cut-off of -50ns Total Negative Slack as 
the threshold for “good” results, the percentage of good results for “deep dive” is higher -  
around 8x better. Deep Dive looks only at the better results and attempts to find other results 
that are within range of the local maxima. 

Figure 7: Differences in effects for Default vs. Deep Dive  

 

Use Deep Dive when the number of good results is less than 5% compared to the total 
number of results. Another situation is when there are good outliers, i.e. one or two results are 
extremely good, this recipe will focus on those outliers and explore the optimization space 
close to them. 

Moving to the Next Phase 
The objective of the Default and Deep Dive recipes is to meet timing or get as close to timing 
closure as possible in Phase 1. Repeat this Phase until one of the following conditions is met: 

1. The design has met timing, in which case the optimization stops. 
2. The design does not show any improvement in the first 50 compilations.  

In that event, usually the design or optimization requires very specific build 
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parameters. Another option is to review location constraints, for example, IP block 
constraints or specific placement constraints. Releasing such constraints may give the 
tools more freedom to explore and optimize the final timing performance. 

In both the above two conditions, optimization ends. 

However, if the situations below apply to you, go directly to Phase 2: Last-Mile 
Optimization. 

1. Improvements in Worst Slack or in TNS have plateaued after three or more rounds. 
This behavior happens usually starting from the 4th round onwards or after 100 
compilations. 
 

2. There are “good” results compared to the original timing results. Good results can be 

defined as  
a. a result within 300ps of meeting your timing target or timing closure 
b. a Worst Slack or TNS that is 80% better than the original value. 
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Last-Mile Recipes 
Some Last-Mile recipes, employed in Phase 2, stimulate and create randomness in FPGA 
placements. Although random in nature, such an approach has proved to produce a consistent, 
albeit limited range of improvements. Use Last-Mile recipes when you are close to meeting 
the timing target. 

Selecting an Appropriate Parent Result 

In Phase 2, first select an existing result from Phase 1 as the “parent”. Optimizations in this 
phase are based on the parent’s parameters. This is usually one of the better results, for 
instance, the one with the best Worst Slack or the best TNS, or the lowest utilization. 

As mentioned previously, any round of Phase 1 can produce one or more results that can be 
run in Phase 2, so you can actually execute both Phases concurrently. It is not required that 
you wait for either Phase to complete before starting the other (see Figure 8). The only 
limitations are probably the availability of compute resources and/or FPGA tool licenses. 

Figure 8: Concurrent Phases and Jobs 

 

Hot Start 
Job 1 

Placement Seeds 
Job 2 

“Good” Result 

A from Job 1 

 

Seeded Effort Level  
Job 4 

 

Default Recipe 
Job 3 

Default Recipe  
Job 5 

“Good” Result 
B from Job 3 

 

Time              Phase 1                                                                          Phase 2 

“Good” Result 

C from Job 3 

Auto Placement 
Job 6 

Deep Dive Recipe  
Job 7 

End 

Met Timing 
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Available Last-Mile Recipes 

Last-Mile recipes are constructed based on the build parameters and flows provided by the 
Quartus tools. 

 Tool(s) What it does 

Auto 
Placement 

Quartus II, 
Quartus Prime 

A single-iteration flow that analyzes the worst 
critical paths in your design, and adjusts the 
locations of certain path elements in order to 
improve timing. The extent of improvement is 
dependent on how much the Fitter thinks that 
the locations have changed. 
 
For more information, please refer to this 
article. 

Effort Level 
Exploration 

Quartus II, 
Quartus Prime 

There are tool options to make the Fitter work 
harder during placement to find better 
solutions. One of these options is called, 
“Effort Level”. This recipe exercises different 
placement effort levels to find improved results 
for your design. 
 
Runtime and degree of improvements vary 
according to the effort level used. Higher effort 
levels do not necessarily yield better results. 

Placement Seed 
Exploration 

 
 

Quartus II. 
Quartus Prime 

This recipe provides the means to perform a 
Seed Sweep, an operation that changes the 
initial placement of a build, thereby affecting 
the results by around +/- 5%. 

Router Effort 
Exploration 

Quartus II, 
Quartus Prime 

Similar to the Placement Effort Exploration 
Recipe above, but applies to routing operations 
instead. 
 
This recipe supports certain device families 
only.  

Seeded Effort 
Level 

Exploration 

Quartus II, 
Quartus Prime 

This recipe combines the best aspects of the  
Placement Effort Level and Placement Seed 
Exploration recipes in that it first executes a 
round of Effort Levels, followed by Seed 

https://support.plunify.com/en/2017/01/13/automatic-placement/
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Faster Convergence 
The InTime Timing Closure Methodology is more efficient when more compute resources 
are made available. Although compute resources have been commoditized by cloud 
computing, many organizations are still restricted to using internal servers due to security 
concerns. The following techniques help your results to converge faster even if you have a 
limited number of build machines; first by reducing the required run time per round and 
subsequently, the number of rounds required to converge onto optimized results. 

Likelihood of Meeting Timing 
For Quartus designs, the Hot Start recipe can also be used as a litmus test of whether the 
timing closure or optimization goal can be achieved. Our guideline is that if the best Worst 
Slack achieved by Hot Start is around -0.5ns, then it is likely that InTime can achieve half of 
that (-0.25ns) and better with subsequent recipes. Of course, the underlying assumption of 
this document is that the design to be optimized is properly constrained and created in 
accordance with the FPGA vendor’s recommended design methodology. Extreme 
circumstances like logic utilization of more than 95% will also make timing closure more 
challenging. 

Hot Start also serves as an assessment of a design’s “health”. For example, if the post-route 
Worst Slack results are all worse than -0.8ns, it is less likely that timing closure can be 
achieved – design changes are probably necessary at that point. 

Re-run Previous Strategies 
Design reuse plays a significant role in the InTime flow. When a design is modified (for 
example, feature additions or bug fixes), we recommend re-using known-good strategies 
from previous iterations as they are likely to yield good results. The “Re-run Strategies” 

recipe in the General category allows you to select strategies to run again (see Figure 9). 

Sweeps on the most improved results. 
 
Compared to running Effort Level or 
Placement Seeds Exploration separately, this 
recipe automates the transition between the 
two. 
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Figure 9: Re-run best strategies 

 

This approach also works very well when you move to a newer version of your FPGA tool. 
With a newer version, design performance results may change even with default build 
parameters. Instead of running InTime Optimization Phases 1 and 2 rounds from scratch, this 
recipe takes advantage of possible correlations with the previous version of the synthesis and 
place-and-route tool to reduce the number of builds needed to get to timing closure. 

Minimize Run Time with Timing Estimates 
Quartus timing estimates obtained at each intermediate build step provide a preview of the 
final results, with the caveat that the accuracy of these estimates improves as the build 
process approaches the routing step. This implies that you would have to wait longer to get a 
clearer picture of your final timing performance. 

The InTime Timing Closure Methodology recommends using post-placement timing as a key 
indicator. Right after placement, the tradeoff between runtime and timing estimate accuracy 
seem to be the best. Routing is often the most time-consuming stage, whereas when 
placement completes, the build is only about halfway done. The chart below tracks Worst 
Slack estimates across different build stages for a design with about 70% logic utilization. 
Although most of these intermediate timing estimates improve as the FPGA tool optimizes 
the design, if the post-placement timing estimate is poor, the post-route result tends to be bad 
as well. Instead of hoping for a black swan-type post-route result, it is generally better to 
make a decision to continue or give up at the post-placement stage. 
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Figure 10: Intermediate Timing Estimates 

 

Use Setting Filters for Specific Design Issues 
Settings Filters allows the user to specify the degree of exploration for one or more build 
parameters. As the designer knows the design best, they may want to specify certain build 
parameters that have been known to perform better (or worse) for the design. Therefore, it 
may be more productive to prime (or limit) the optimizations by specifying upfront 
parameters that should be included or avoided.   
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Figure 11: Settings Filters 

 

For example, in a congested design, finding the best synthesis parameters before exploring 
implementation ones is often more efficient. In such a situation, running the Default recipe 
with synthesis parameters in the “Whitelist” section of the Settings Filters ensures that 

synthesis is explored first. 

Subsequently, if you take the best synthesis parameters and place them in the Locklist 
(making sure to clear the Whitelist as well), running the Default recipe again with those good 
synthesis parameters locked-down ensures that they are used in all builds. 

More details about this feature can be found in the InTime documentation - “How to use 
project setting filters”. 

Conclusion 
Timing Closure is a critical step in your design flow. Planning for timing closure is essential 
for pre-empting potential issues. Design complexity has increased tremendously and it is 
necessary to look beyond traditional approaches to solve these problems. The InTime Timing 
Closure Methodology outlines a systematic way of achieving consistent performance 
improvements. Assisted by technologies like cloud computing, most timing issues can be 
resolved without overhauling the entire RTL or sacrificing critical functionality. 

(Use these exact settings) 

(Vary only these settings) 

(Do not use these settings) 

https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
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Appendix A: InTime Recipes 
  

Recipe 
Quartus-II/ 
Prime Std 

Quartus 
Prime Pro 

 
Description 

 
Learning 

 
Hot Start 

 
Y 

 
Y 

 
Generates initial strategies for your design to 
evaluate how much it can be optimized. 

  
InTime Default 

 
Y 

 
Y 

Performs first time calibration, exploration and 
optimization of your design. 

  
InTime Default 

Extra 

 
Y 

 
Y 

Runs InTime Default and picks the best result to 
perform additional optimizations. 

  
Deep Dive 

 
Y 

 
Y 

Performs deeper analysis on existing results, 
especially on differences between good and bad 
ones. 

 
Last-Mile 

 
Auto 

Placement 

 
Y 

 
Y 

 
Adjusts the physical locations of certain critical path 
elements in order to improve timing. 

  
Effort Level 
Exploration 

 
Y 

 
Y 

 
Tries different placement effort settings, trading 
against runtime, to improve performance. 

  
Placement Seed 

Exploration 

 
Y 

 
Y 

 
Performs different placement initilizations on the 
design. 

 Router Effort 
Exploration 

Y Y Similar to Effort Level Exploration but uses Routing 
Effort settings instead. 

  
Seeded Effort 

Level 
Exploration 

 
Y 

 
Y 

 
Combines Effort Level and Placement Seed 
Exploration by first running the former and then 
pick the best results to run the latter on. 

 
General 

 
Just Compile 
My Design 

 
Y 

 
Y 

 
Compiles the active revision in your project. 

  
Rerun Strategies 

 
Y 

 
Y 

 
Rerun strategies selected by the user. 

 
Advanced 

 
Custom Flow 

 
Y 

 
Y 

 
Uses strategies specified by the user. 

 

  



 

22 

Document Revision History 

 Date Changes Made 
1 08 June 2018 Initial Version 

 


	Introduction
	Understanding the InTime Optimization Phases
	Phase 1: Learning Lifecycle
	Phase 2: Last-Mile Optimization
	Combining Phase 1 & Phase 2

	InTime Optimization Process
	InTime Recipes
	Recipe Selection
	Parameter Selection
	Parameter effects at Different Build Stages
	Build Parameter Inter-dependencies

	The InTime Default Recipe
	Multiple Rounds and Runs
	Longer Runtimes and Aggressive Build Parameter Selections
	Goal-Based Build Parameter Selection

	The Deep Dive Recipe
	Moving to the Next Phase
	Last-Mile Recipes
	Selecting an Appropriate Parent Result
	Available Last-Mile Recipes


	Faster Convergence
	Likelihood of Meeting Timing
	Re-run Previous Strategies
	Minimize Run Time with Timing Estimates
	Use Setting Filters for Specific Design Issues

	Conclusion
	Appendix A: InTime Recipes

