

2

FPGA Design Performance Optimization for Complex Designs

InTime Methodology for Quartus
Kirvy Teo / Harnhua Ng

Contents
Introduction .. 4

Understanding the InTime Optimization Phases .. 5

Phase 1: Learning Lifecycle .. 5

Phase 2: Last-Mile Optimization ... 6

Combining Phase 1 & Phase 2 ... 7

InTime Optimization Process .. 8

InTime Recipes ... 8

Recipe Selection .. 8

Parameter Selection ... 10

Parameter effects at Different Build Stages .. 10

Build Parameter Inter-dependencies .. 10

The InTime Default Recipe ... 11

Multiple Rounds and Runs .. 11

Longer Runtimes and Aggressive Build Parameter Selections 12

Goal-Based Build Parameter Selection .. 12

The Deep Dive Recipe .. 13

Moving to the Next Phase ... 13

Last-Mile Recipes ... 15

Selecting an Appropriate Parent Result .. 15

Available Last-Mile Recipes.. 16

Faster Convergence ... 17

Likelihood of Meeting Timing... 17

Re-run Previous Strategies .. 17

3

Minimize Run Time with Timing Estimates .. 18

Use Setting Filters for Specific Design Issues .. 19

Conclusion .. 20

Appendix A: InTime Recipes .. 21

4

Introduction
With advancements in FPGA architectures and technology, FPGA designs are getting more
and more complex. The growing prevalence of high-speed interfaces, mixed-signal blocks
and usage of 3rd-party Intellectual Property (IP) blocks are some of the factors that have
exponentially increased the difficulties of FPGA timing closure. In response to these new
challenges, the latest FPGA tools have evolved accordingly, possessing more advanced
methodologies and better synthesis and place-and-route algorithms to handle modern designs.
In particular, these improvements have led to new build parameters with noticeable impact on
design performance. The other inevitable consequence is an increase in overall build time and
in compute resource demands. With newer and larger device families, build times and tool
memory requirements may skyrocket, leading to longer turnaround times and reduced
productivity.

To deal with these challenges, the InTime Design Optimizer tool is based on best practices
and guidelines to determine the best build parameters, with the condition that the design is
currently immutable, i.e. you cannot change your RTL or constraints. InTime uses machine
learning principles to achieve timing closure and optimization, treating the FPGA synthesis
and place-and-route tools as black boxes and analyzing design performance across a whole
range of build parameter variations.

Under the InTime Optimization Methodology, an effective build process is no longer a one-
designer-to-one-machine operation. Instead it is a systematic series of calculated steps done
by one or many designers on multiple build machines. From the resulting analysis, InTime
deduces and recommends good build parameters aimed at improving design performance.
The guidelines in this document will help you achieve your performance goals in the
minimum number of builds and fastest turnaround time possible.

Commonly-used terms

 Total Negative Slack (TNS): Sum of the negative slack in your design. If 0,
then the design meets timing.

 Worst Negative Slack (WS or WNS): The most severe amount by which
timing fails in your design. If positive, then there are no timing failures.

5

Understanding the InTime Optimization Phases
InTime is a software plugin that runs FPGA tools such as Intel Quartus Prime (“Quartus”) in
the background. The FPGA tools offers many build parameters that affect an FPGA design
on a global as well as local block level. InTime’s goal is to determine the optimum build
parameters for the design. To deal with an enormous design space consisting of countless
combinations of parameters, InTime uses a machine learning approach combined with
domain-specific heuristics to predict and narrow down the best parameters. Machine learning
is a means to converge more quickly on the optimal parameters compared to doing random
variations.

To maximize timing closure effectiveness, it is necessary to generate sufficient data points
from build results and learn from past results. There are two phases to the optimization
process: Phase 1 is the “Learning Lifecycle” and Phase 2, “Last-Mile Optimization”.

Phase 1: Learning Lifecycle
In this phase, the recommended InTime Optimization Methodology is to progressively
optimize a design over several rounds of synthesis and place-&-route builds in an iterative
“build-and-learn” lifecycle.

Figure 1: Learning Lifecycle

1. Use the current InTime database and train a machine learning model to predict
combinations of build parameters.

Step 1: Predict parameters

Step 2: Run concurrent compilations

Step 3: Learn from the results

6

2. Leverage on compute power to run multiple builds concurrently.
3. If one or more of the builds meet timing, optimization stops and your goal has been

achieved.
4. Otherwise, InTime applies machine learning to learn from the build results and uses

the updated data model for subsequent predictions. Repeat steps 1 to 4 if necessary.
5. If there is at least one “good” result (“good” is defined in the “Moving to the Next

Phase section”), proceed to Phase 2.

The build optimization rounds are represented and displayed in InTime’s history window (see
Figure 2). The entire history of compilations and their sequences is stored and saved in a
hierarchical tree structure.

Figure 2: History Window of InTime

Each round is called a “job” and each combination of parameters is called a “strategy”. In the

figure above, “calibrate_24” or “calibrate_19” are names of strategies, and a job, denoted by
the red rectangle, can consist of one or more strategies. Each job has a “parent” result on
which the strategies are based, and each new job adds a hierarchical level that branches out
from its parent.

Phase 2: Last-Mile Optimization
The second phase begins when at least one of the results is close to meeting the performance
target or if results have stopped improving in Phase 1. In the former case, the optimization
relies on specific techniques that stimulate minor (compared to those in Phase 1) variations in
the results. This phase consists of:

1. Random
Running placement seed exploration, effort levels and placement adjustments.

7

The quality of results in Last-Mile Optimization is a function of compute power. Having
more compute power ensures that the builds finish faster. However, the key to obtaining good
Phase 2 results is that you must first attain a sufficiently good result in Phase 1.

Combining Phase 1 & Phase 2
Since each round of the Learning Lifecycle (Phase 1) can produce multiple results which are
worthy of Last-Mile Optimization (Phase 2), you can actually run both Phases together in
parallel. It is not necessary to wait for either Phase to complete before starting the other (See
Figure 3).

Figure 3: Using Phase 1 in parallel with Phase 2

Job 1

Job 2

“Good” Result

A from Job 1

Job 4

Job 3

Job 5

“Good” Result

B from Job 3

Time Phase 1 Phase 2

“Good” Result

C from Job 3

Job 6

 Job 7

End

Met Timing

Start

8

InTime Optimization Process

InTime Recipes
Within each phase, there are multiple “recipes”. A “recipe” represents an algorithm to select
build parameters, either through machine learning, randomly or via other methods. Each
recipe generates one or more strategies. Different recipes are used under different conditions.
InTime comes with four recipe categories:

1. Learning
2. Last-Mile
3. General
4. Advanced

Firstly, use Learning recipes during Phase 1 to automatically select build parameters in light
of all the build result data accumulated in previous rounds. Employ Last-Mile recipes when
your design is close to meeting your timing target. General recipes include a basic script to
build your design as is, plus a way to re-build existing strategies. Finally, Advanced recipes
give you the flexibility to run customized strategies that can be generated outside of InTime.

A complete list of all the recipes can be found in Appendix A.

Recipe Selection
For a design new to InTime, our recommended approach is to assume the absence of any data
points and start with the “Hot Start” recipe, a Learning Lifecycle recipe. The figure below
shows the typical optimization process of InTime for Quartus.

9

Figure 4: InTime Optimization Flow for Quartus Designs

Hot Start serves multiple purposes and consists of known-good strategies as well as strategies
distilled from your InTime database. Its first objective is to explore different parameters that
worked well for known issues, for example congestion and high utilization in different
FPGAs and designs. The other purpose is to generate initial data for subsequent machine
learning rounds.

Hot Start can also be used as a test to gauge whether or not timing closure is possible. Refer
to the section “Possibility of Meeting Timing”

10

Parameter Selection

Parameter effects at Different Build Stages

The impact to results at different build stages can vary by orders of magnitude. Refer to the
following figure.

Figure 5: Optimization Funnel

Using good synthesis parameters will generally have a larger impact on the overall design
performance than varying routing parameters. This is especially important if your design has
a high Worst Slack.

Build Parameter Inter-dependencies

The FPGA tool user guides describe in varying levels of detail what each build parameter
does and what aspect of performance it targets. By itself, a build parameter is usually easy to
understand in terms of why, when and how to use it. However, it is vital to understand that

11

build parameters do not operate in isolation and have complex, inter-dependent relationships
with other build parameters.

For example, synthesis parameter A may affect placement parameter B, or placement
parameter B may override the effects of routing parameter C. With between 30 to 80 different
build parameters depending on the FPGA tool, it is difficult to fully comprehend whether a
single parameter in a particular group of parameters is good or bad. Using machine learning,
InTime establishes a consistent and disciplined approach to deciding what is good or bad.

The InTime Default Recipe
The InTime Default (“Default”) recipe is the follow-up to Hot Start. In the absence of Hot
Start, you can also use Default as your first recipe. This recipe is highly flexible.

Multiple Rounds and Runs

The Default recipe requires multiple rounds and will be compute-intensive. Ideally, you
should use enough machines to complete them as quickly as possible. The default number of
rounds is three (3) and the number of runs (strategies) per round is thirty (30). In many cases,
more rounds are necessary due to the need for more data points. The recommended total
number of builds is at least 100, regardless of rounds and runs. The figure below shows eight
rounds of Default. Each round corresponds to a “job”. The green line represents the best TNS
result for a particular round/job, and the red line shows the worst TNS for that round/job.

12

Figure 6: TNS improvements based on Default Recipe

Figure 6 shows how the best result of a round can fluctuate over multiple rounds, as opposed
to having a consistent downwards trend. This is expected in design space exploration.

Longer Runtimes and Aggressive Build Parameter Selections

Compared to Hot Start, Default has a wider range of parameter selections. This is necessary
to trigger a broader variation of results to learn from. If the design’s utilization is very high,
strategies are more likely to over-fit due to Default’s usage of more aggressive parameters.
The other consequence of employing aggressive parameters is an increase in build runtime.
Because overly-long runtimes tend not to result in improved timing, InTime recommends a
maximum runtime of 2x the original build time. Maximum runtime is an InTime tool
property that the user can specify to have builds automatically terminated beyond a certain
elapsed time. Refer to our user guide “Set Flow Properties” for more information.

Goal-Based Build Parameter Selection

Default selects parameters based on your target goal, which can be “Speed-TNS”, “Area” or
“Power” in InTime’s Flow Properties section. Note that InTime does not optimize by
targeting Worst Slack/WNS, because the critical path responsible for WNS is usually
different in various strategies and is generally not an apples-to-apples comparison between
results. Better WNS is achieved as an effect of optimizing for better TNS.

No more
improvements

 Phase 1 Phase 2

https://docs.plunify.com/intime/quickstart_vivado.html#set-flow-properties

13

The Deep Dive Recipe
Compared to Default, the Deep Dive recipe (“Deep Dive”) has a much less aggressive build
parameter selection and is typically employed after running Default. It focuses on using
existing good results and varying about 10-20% of those parameters. Deep Dive is also
helpful when you are still not meeting timing after Phase 2 and need to run more rounds in
Phase 1.

For example, Figure 7 shows shows that by using a cut-off of -50ns Total Negative Slack as
the threshold for “good” results, the percentage of good results for “deep dive” is higher -
around 8x better. Deep Dive looks only at the better results and attempts to find other results
that are within range of the local maxima.

Figure 7: Differences in effects for Default vs. Deep Dive

Use Deep Dive when the number of good results is less than 5% compared to the total
number of results. Another situation is when there are good outliers, i.e. one or two results are
extremely good, this recipe will focus on those outliers and explore the optimization space
close to them.

Moving to the Next Phase
The objective of the Default and Deep Dive recipes is to meet timing or get as close to timing
closure as possible in Phase 1. Repeat this Phase until one of the following conditions is met:

1. The design has met timing, in which case the optimization stops.
2. The design does not show any improvement in the first 50 compilations.

In that event, usually the design or optimization requires very specific build

14

parameters. Another option is to review location constraints, for example, IP block
constraints or specific placement constraints. Releasing such constraints may give the
tools more freedom to explore and optimize the final timing performance.

In both the above two conditions, optimization ends.

However, if the situations below apply to you, go directly to Phase 2: Last-Mile
Optimization.

1. Improvements in Worst Slack or in TNS have plateaued after three or more rounds.
This behavior happens usually starting from the 4th round onwards or after 100
compilations.

2. There are “good” results compared to the original timing results. Good results can be

defined as
a. a result within 300ps of meeting your timing target or timing closure
b. a Worst Slack or TNS that is 80% better than the original value.

15

Last-Mile Recipes
Some Last-Mile recipes, employed in Phase 2, stimulate and create randomness in FPGA
placements. Although random in nature, such an approach has proved to produce a consistent,
albeit limited range of improvements. Use Last-Mile recipes when you are close to meeting
the timing target.

Selecting an Appropriate Parent Result

In Phase 2, first select an existing result from Phase 1 as the “parent”. Optimizations in this
phase are based on the parent’s parameters. This is usually one of the better results, for
instance, the one with the best Worst Slack or the best TNS, or the lowest utilization.

As mentioned previously, any round of Phase 1 can produce one or more results that can be
run in Phase 2, so you can actually execute both Phases concurrently. It is not required that
you wait for either Phase to complete before starting the other (see Figure 8). The only
limitations are probably the availability of compute resources and/or FPGA tool licenses.

Figure 8: Concurrent Phases and Jobs

Hot Start
Job 1

Placement Seeds
Job 2

“Good” Result

A from Job 1

Seeded Effort Level
Job 4

Default Recipe
Job 3

Default Recipe
Job 5

“Good” Result
B from Job 3

Time Phase 1 Phase 2

“Good” Result

C from Job 3

Auto Placement
Job 6

Deep Dive Recipe
Job 7

End

Met Timing

16

Available Last-Mile Recipes

Last-Mile recipes are constructed based on the build parameters and flows provided by the
Quartus tools.

 Tool(s) What it does

Auto
Placement

Quartus II,
Quartus Prime

A single-iteration flow that analyzes the worst
critical paths in your design, and adjusts the
locations of certain path elements in order to
improve timing. The extent of improvement is
dependent on how much the Fitter thinks that
the locations have changed.

For more information, please refer to this
article.

Effort Level
Exploration

Quartus II,
Quartus Prime

There are tool options to make the Fitter work
harder during placement to find better
solutions. One of these options is called,
“Effort Level”. This recipe exercises different
placement effort levels to find improved results
for your design.

Runtime and degree of improvements vary
according to the effort level used. Higher effort
levels do not necessarily yield better results.

Placement Seed
Exploration

Quartus II.
Quartus Prime

This recipe provides the means to perform a
Seed Sweep, an operation that changes the
initial placement of a build, thereby affecting
the results by around +/- 5%.

Router Effort
Exploration

Quartus II,
Quartus Prime

Similar to the Placement Effort Exploration
Recipe above, but applies to routing operations
instead.

This recipe supports certain device families
only.

Seeded Effort
Level

Exploration

Quartus II,
Quartus Prime

This recipe combines the best aspects of the
Placement Effort Level and Placement Seed
Exploration recipes in that it first executes a
round of Effort Levels, followed by Seed

https://support.plunify.com/en/2017/01/13/automatic-placement/

17

Faster Convergence
The InTime Timing Closure Methodology is more efficient when more compute resources
are made available. Although compute resources have been commoditized by cloud
computing, many organizations are still restricted to using internal servers due to security
concerns. The following techniques help your results to converge faster even if you have a
limited number of build machines; first by reducing the required run time per round and
subsequently, the number of rounds required to converge onto optimized results.

Likelihood of Meeting Timing
For Quartus designs, the Hot Start recipe can also be used as a litmus test of whether the
timing closure or optimization goal can be achieved. Our guideline is that if the best Worst
Slack achieved by Hot Start is around -0.5ns, then it is likely that InTime can achieve half of
that (-0.25ns) and better with subsequent recipes. Of course, the underlying assumption of
this document is that the design to be optimized is properly constrained and created in
accordance with the FPGA vendor’s recommended design methodology. Extreme
circumstances like logic utilization of more than 95% will also make timing closure more
challenging.

Hot Start also serves as an assessment of a design’s “health”. For example, if the post-route
Worst Slack results are all worse than -0.8ns, it is less likely that timing closure can be
achieved – design changes are probably necessary at that point.

Re-run Previous Strategies
Design reuse plays a significant role in the InTime flow. When a design is modified (for
example, feature additions or bug fixes), we recommend re-using known-good strategies
from previous iterations as they are likely to yield good results. The “Re-run Strategies”

recipe in the General category allows you to select strategies to run again (see Figure 9).

Sweeps on the most improved results.

Compared to running Effort Level or
Placement Seeds Exploration separately, this
recipe automates the transition between the
two.

18

Figure 9: Re-run best strategies

This approach also works very well when you move to a newer version of your FPGA tool.
With a newer version, design performance results may change even with default build
parameters. Instead of running InTime Optimization Phases 1 and 2 rounds from scratch, this
recipe takes advantage of possible correlations with the previous version of the synthesis and
place-and-route tool to reduce the number of builds needed to get to timing closure.

Minimize Run Time with Timing Estimates
Quartus timing estimates obtained at each intermediate build step provide a preview of the
final results, with the caveat that the accuracy of these estimates improves as the build
process approaches the routing step. This implies that you would have to wait longer to get a
clearer picture of your final timing performance.

The InTime Timing Closure Methodology recommends using post-placement timing as a key
indicator. Right after placement, the tradeoff between runtime and timing estimate accuracy
seem to be the best. Routing is often the most time-consuming stage, whereas when
placement completes, the build is only about halfway done. The chart below tracks Worst
Slack estimates across different build stages for a design with about 70% logic utilization.
Although most of these intermediate timing estimates improve as the FPGA tool optimizes
the design, if the post-placement timing estimate is poor, the post-route result tends to be bad
as well. Instead of hoping for a black swan-type post-route result, it is generally better to
make a decision to continue or give up at the post-placement stage.

19

Figure 10: Intermediate Timing Estimates

Use Setting Filters for Specific Design Issues
Settings Filters allows the user to specify the degree of exploration for one or more build
parameters. As the designer knows the design best, they may want to specify certain build
parameters that have been known to perform better (or worse) for the design. Therefore, it
may be more productive to prime (or limit) the optimizations by specifying upfront
parameters that should be included or avoided.

20

Figure 11: Settings Filters

For example, in a congested design, finding the best synthesis parameters before exploring
implementation ones is often more efficient. In such a situation, running the Default recipe
with synthesis parameters in the “Whitelist” section of the Settings Filters ensures that

synthesis is explored first.

Subsequently, if you take the best synthesis parameters and place them in the Locklist
(making sure to clear the Whitelist as well), running the Default recipe again with those good
synthesis parameters locked-down ensures that they are used in all builds.

More details about this feature can be found in the InTime documentation - “How to use
project setting filters”.

Conclusion
Timing Closure is a critical step in your design flow. Planning for timing closure is essential
for pre-empting potential issues. Design complexity has increased tremendously and it is
necessary to look beyond traditional approaches to solve these problems. The InTime Timing
Closure Methodology outlines a systematic way of achieving consistent performance
improvements. Assisted by technologies like cloud computing, most timing issues can be
resolved without overhauling the entire RTL or sacrificing critical functionality.

(Use these exact settings)

(Vary only these settings)

(Do not use these settings)

https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters

21

Appendix A: InTime Recipes

Recipe
Quartus-II/
Prime Std

Quartus
Prime Pro

Description

Learning

Hot Start

Y

Y

Generates initial strategies for your design to
evaluate how much it can be optimized.

InTime Default

Y

Y

Performs first time calibration, exploration and
optimization of your design.

InTime Default

Extra

Y

Y

Runs InTime Default and picks the best result to
perform additional optimizations.

Deep Dive

Y

Y

Performs deeper analysis on existing results,
especially on differences between good and bad
ones.

Last-Mile

Auto

Placement

Y

Y

Adjusts the physical locations of certain critical path
elements in order to improve timing.

Effort Level
Exploration

Y

Y

Tries different placement effort settings, trading
against runtime, to improve performance.

Placement Seed

Exploration

Y

Y

Performs different placement initilizations on the
design.

 Router Effort
Exploration

Y Y Similar to Effort Level Exploration but uses Routing
Effort settings instead.

Seeded Effort

Level
Exploration

Y

Y

Combines Effort Level and Placement Seed
Exploration by first running the former and then
pick the best results to run the latter on.

General

Just Compile
My Design

Y

Y

Compiles the active revision in your project.

Rerun Strategies

Y

Y

Rerun strategies selected by the user.

Advanced

Custom Flow

Y

Y

Uses strategies specified by the user.

22

Document Revision History

 Date Changes Made
1 08 June 2018 Initial Version

	Introduction
	Understanding the InTime Optimization Phases
	Phase 1: Learning Lifecycle
	Phase 2: Last-Mile Optimization
	Combining Phase 1 & Phase 2

	InTime Optimization Process
	InTime Recipes
	Recipe Selection
	Parameter Selection
	Parameter effects at Different Build Stages
	Build Parameter Inter-dependencies

	The InTime Default Recipe
	Multiple Rounds and Runs
	Longer Runtimes and Aggressive Build Parameter Selections
	Goal-Based Build Parameter Selection

	The Deep Dive Recipe
	Moving to the Next Phase
	Last-Mile Recipes
	Selecting an Appropriate Parent Result
	Available Last-Mile Recipes

	Faster Convergence
	Likelihood of Meeting Timing
	Re-run Previous Strategies
	Minimize Run Time with Timing Estimates
	Use Setting Filters for Specific Design Issues

	Conclusion
	Appendix A: InTime Recipes

