

FPGA Design Performance Optimization for Complex Designs

InTime Timing Closure Methodology

for Vivado
Kirvy Teo / Ng Harnhua

Contents

Introduction .. 3

Understanding the InTime Optimization Phases ... 4

Phase 1: Learning Lifecycle ... 4

Phase 2: Last-Mile Optimization ... 5

Combining Phase 1 & Phase 2 ... 6

InTime Optimization Process .. 7

InTime Recipes .. 7

Recipe Selection... 7

Parameter Selection ... 9

Parameter effects at Different Build Stages ... 9

Build parameter inter-dependencies .. 10

The InTime Default Recipe ... 10

Multiple Rounds and Runs... 10

Longer Runtimes and Aggressive Build Parameter Selections 11

Goal-Based Build Parameter Selection .. 11

The Deep Dive Recipe ... 12

Moving to the Next Phase .. 12

Last-Mile Recipes .. 14

Selecting an Appropriate Parent Result ... 14

Available Last-Mile Recipes.. 15

Faster Convergence .. 17

2

Likelihood of Meeting Timing... 17

Re-run Previous Strategies ... 17

Minimize Run Time with Timing Estimates ... 18

Use Setting Filters for Specific Design Issues ... 19

Conclusion ... 20

Appendix A: InTime Recipes .. 21

3

Introduction

With advancements in FPGA architectures and technology, FPGA designs are getting more

and more complex. The growing prevalence of high-speed interfaces, mixed-signal blocks

and usage of 3rd-party Intellectual Property (IP) blocks are some of the factors that have

exponentially increased the difficulties of FPGA timing closure. In response to these new

challenges, the latest FPGA tools have evolved accordingly, possessing more advanced

methodologies and better synthesis and place-and-route algorithms to handle modern designs.

In particular, these improvements have led to new build parameters which have noticeable

impact on design performance. The other inevitable consequence is an increase in overall

build time and in compute resource demands. With newer and larger device families, build

times and tool memory requirements may skyrocket, adversely leading to longer turnaround

times and reduced productivity.

To deal with these challenges, the InTime Timing Closure Methodology is a set of best

practices and guidelines to determine the best build parameters under the condition that the

design is currently immutable, i.e. you cannot change your RTL or constraints. InTime uses

machine learning principles to achieve timing closure or optimization, treating the FPGA

synthesis and place-and-route tools as black boxes and analyzing design performance across a

whole range of build parameter variations.

Under the InTime Timing Closure Methodology, the build process is no longer a one-

designer-to-one-machine operation. Instead it is a systematic series of calculated steps done

by one or many designers on multiple build machines. From the resulting analysis, InTime

deduces and recommends sets of good build parameters aimed at improving design

performance. The guidelines in this document will help you achieve your performance goals

in the minimum number of compilations and fastest turnaround time possible.

Commonly-used terms

• Total Negative Slack (TNS): Sum of the negative slack in your design. If 0,

then the design meets timing.

• Worst Negative Slack (WS or WNS): The most severe amount by which

timing fails in your design. If positive, then there are no timing failures.

4

Understanding the InTime Optimization Phases

InTime is a software plugin that runs FPGA tools such as Xilinx Vivado (“Vivado”) in the

background. The FPGA tools offers many build parameters that affect an FPGA design on a

global as well as local block level. InTime’s goal is to determine the optimum build

parameters for the design. To deal with an enormous design space consisting of countless

combinations of parameters, InTime uses machine learning techniques and domain-specific

heuristics to predict and narrow down the best parameters. To maximize timing closure

effectiveness, it is necessary to generate sufficient data points from build results and learn

from past results. There are two phases to the optimization process: Phase 1 is the “Learning

Lifecycle” and Phase 2, “Last-Mile Optimization”.

Phase 1: Learning Lifecycle

In this phase, the recommended InTime Methodology is to progressively optimize a design

over several rounds of synthesis and place-and-route builds in an iterative “build-and-learn”

lifecycle.

Figure 1: Learning Lifecycle

1. Use the current InTime database and train a machine learning model to predict

combinations of build parameters.

2. Leverage on compute power to run multiple builds concurrently.

3. If one or more of the builds meet timing, optimization stops and your goal has been

achieved.

Step 1: Predict parameters

Step 2: Run concurrent compilations

Step 3: Learn from the results

5

4. Otherwise, InTime applies machine learning to learn from the build results and uses

the updated data model for subsequent predictions. Repeat steps 1 to 4 if necessary.

5. If there is at least one “good” result (“good” is defined in the “Moving to the Next

Phase section”), proceed to Phase 2.

The build optimization rounds are represented and displayed in InTime’s history window (see

Figure 2). The entire history of compilations and their sequences is stored and saved in a

hierarchical tree structure.

Figure 2: History Window of InTime

Each round is called a “job” and each combination of parameters is called a “strategy”. In the

figure above, “calibrate_24” or “calibrate_19” are names of strategies, and a job, denoted by

the red rectangle, can consist of one or more strategies. Each job has a “parent” result on

which the strategies are based, and each new job adds a hierarchical level that branches out

from its parent.

Phase 2: Last-Mile Optimization

The second phase begins when at least one of the results is close to meeting the performance

target or if results have stopped improving in Phase 1. In the former case, the optimization

relies on specific techniques that stimulate minor (compared to those in Phase 1) variations in

the results. There are two types of optimizations in this phase:

1. Random

Running placement exploration, effort levels and exploiting clock uncertainties.

2. Incremental

Using a particular build to run post-route physical optimization iteratively.

6

The quality of results in Last-Mile Optimization is a function of compute power. Having

more compute power ensures that the builds finish faster. However the key to obtaining good

Phase 2 results is that you must first attain a sufficiently good result in Phase 1.

Combining Phase 1 & Phase 2

Since each round of the Learning Lifecycle (Phase 1) can produce multiple results which are

worthy of Last-Mile Optimization (Phase 2), you can actually run both Phases together in

parallel. It is not necessary to wait for either Phase to complete before starting the other (See

Figure 3).

Figure 3: Using Phase 1 in parallel with Phase 2

Job 1

Job 2

“Good” Result

A from Job 1

Job 4

Job 3

Job 5

“Good” Result

B from Job 3

Time Phase 1 Phase 2

“Good” Result

C from Job 3

Job 6

Job 7

End

Met Timing

Start

7

InTime Optimization Process

InTime Recipes

Within each phase, there are multiple “recipes”. A “recipe” represents an algorithm to select

build parameters, either through machine learning, randomly or via other methods. Each

recipe generates one or more strategies. Different recipes are used under different conditions.

InTime comes with four recipe categories:

1. Learning

2. Last-Mile

3. General

4. Advanced

Firstly, use Learning recipes during Phase 1 to automatically select build parameters in light

of all the build result data accumulated in previous rounds. Employ Last-Mile recipes when

your design is close to meeting your timing targets. General recipes include basic compilation

of the design as is, plus a way to re-build existing strategies. Finally, Advanced recipes give

you the flexibility to run customized strategies that can be generated outside of InTime.

A complete list of all the recipes can be found in Appendix A.

Recipe Selection

For a design new to InTime, the recommended Methodology is to assume that there are zero

data points and start with the “Hot Start” (or “Explorer” for older versions of InTime) recipe,

a Learning recipe. The figure below shows the typical optimization process of InTime for

Vivado.

8

Figure 4: InTime Optimization Flow for Vivado Designs

Hot Start serves multiple purposes and consists of known-good strategies as well as strategies

distilled from the InTime database. The first is to explore different parameters that work for

known issues, for example congestion, high utilization and die crossings in multi-die FPGAs.

The other purpose is to generate initial data for subsequent machine learning rounds.

Hot Start

Default / Default Extra

Deep Dive

Placement Exploration Clock Margin

Multiple

Rounds

Phase 1: Learning

Phase 2: Last Mile

Good

Result?
e.g. < 100ps from

target WNS

Meet Timing

Goals?

Yes

Yes

End

Extra opt

No

No

Start

9

Hot Start can also be used as a litmus test to gauge whether or not timing closure is possible.

Refer to the section “Possibility of Meeting Timing”

Parameter Selection

Parameter effects at Different Build Stages

The impact to results at different build stages can vary by orders of magnitude. Refer to the

following figure from the Vivado UltraFast Design Methodology Guide.

Figure 5: Xilinx UltraFast Design Methodology

“As shown in the following figure, early stages in the design flow (C, C++, and

RTL synthesis) have a much higher impact on design performance, density, and

power than the later implementation stages. Therefore, if the design does not meet

timing goals, Xilinx recommends that you revisit the synthesis stage, including

HDL and constraints, rather than iterating for a solution in the implementation

stages only.”

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug949-vivado-design-methodology.pdf

10

You can see that using the appropriate parameters for synthesis will generally have a larger

impact on the overall design performance than varying routing parameters. This is especially

important if your design has a high Worst Slack.

Build parameter inter-dependencies

The FPGA tools’ user guides describe in varying levels of detail what each build parameter

does and what aspect of performance it targets. By itself, a build parameter is usually easy to

understand in terms of why, when and how to use it. However, it is vital to understand that

build parameters do not operate in isolation and have complex, inter-dependent relationships

with other build parameters.

For example, synthesis parameter A may affect placement parameter B, or placement

parameter B may override the effects if routing parameter C. With between 30 to 80 different

build parameters depending on the FPGA tool, it is difficult to fully comprehend whether a

single parameter in a particular group of parameters is good or bad. Using machine learning

algorithms, InTime establishes a consistent and disciplined approach to deciding what is good

or bad.

The InTime Default Recipe

The InTime Default (“Default”) recipe is the follow-up to Hot Start. In the absence of Hot

Start, you can also use Default as your first recipe. This recipe is a highly flexible recipe

Multiple Rounds and Runs

The Default recipe requires multiple rounds and will be compute-intensive. Ideally, you

should use enough machines to complete them as quickly as possible. The default number of

rounds is three (3) and the number of runs (strategies) per round is thirty (30). In many cases,

more rounds are necessary due to the need for more data points. The recommended number

of builds is at least 100, regardless of rounds and runs. The figure below shows eight rounds

of Default. Each round corresponds to a “job”. The green line represents the best TNS result

for a particular round/job, and the red line shows the worst TNS for that round/job.

11

Figure 6: TNS improvements based on Default Recipe

Figure 6 also illustrates how the “best result” in a round can fluctuate up and down over a

number of rounds, as opposed to a consistent downwards trend. This is an expected artifact of

design space exploration.

Longer Runtimes and Aggressive Build Parameter Selections

Compared to Hot Start, Default has a wider range of parameter selections. This is necessary

to trigger a broader variation of results to learn from. If the design’s utilization is very high,

strategies are more likely to over-fit due to Default’s usage of more aggressive parameters.

The other consequence of employing aggressive parameters is an increase in build runtime.

Because overly-long runtimes tend not to result in improved timing, InTime recommends a

maximum runtime of 2x the original build time. Maximum runtime is an InTime tool

property that the user can specify to have builds automatically terminated beyond a certain

elapsed time. Refer to the user guide “Set Flow Properties” for more information

Goal-Based Build Parameter Selection

Default selects parameters based on your target goal, which can “Speed-TNS”, “Area” or

“Power” in InTime’s Flow Properties section. Note that InTime does not optimize based on

WNS, because the critical path responsible for WNS is usually different in various strategies

and is generally not an apples-to-apples comparison between two results. Better WNS is

achieved as an effect of optimizing for better TNS.

No more

improvements

 Phase 1 Phase 2

https://docs.plunify.com/intime/quickstart_vivado.html#set-flow-properties

12

The Deep Dive Recipe

Compared to Default, the Deep Dive recipe (“Deep Dive”) has a much less aggressive build

parameter selection and is typically employed after running Default. It focuses on using

existing good results and varying about 10-20% of those parameters. Deep Dive is also

helpful when you are still not meeting timing after Phase 2 and need to run more round in

Phase 1.

For example, Figure 7 shows that only eight (can be up to 15) build parameters are different

between a Deep Dive strategy and a Default strategy in a Vivado design, whereas the number

of dissimilar parameters between two Default strategies can be 30 or more.

Figure 7: Differences in parameters for Deep Dive strategy

Use Deep Dive when the number of good results is less than 5% compared to the total

number of results. Another situation is when there are good outliers, i.e. one or two results are

extremely good, this recipe will focus on those outliers and explore the optimization space

close to them.

Moving to the Next Phase

The objective of the Default and Deep Dive recipes is to meet timing or get as close to timing

closure as possible in Phase 1. Repeat this Phase until one of the following conditions is met:

1. The design has met timing, in which case the optimization stops.

13

2. The design does not show any improvement in the first 50 compilations.

In that event, usually the design or optimization requires very specific build

parameters. Another option is to review location constraints, for example, IP block

constraints or specific placement constraints. Releasing such constraints may give the

tools more freedom to explore and optimize the final timing performance.

In both the above two conditions, optimization ends.

However, in the situations described below, go directly to Phase 2: Last-Mile Optimization.

1. Improvements in the Worst Slack or in the TNS have plateaued after three or more

rounds. This behavior happens usually from the 4th round onwards or after 100

compilations.

2. There are “good” results compared to the original timing results. Good results can be

defined as

a. a result within 300ps of meeting your timing targets or timing closure

b. a Worst Slack or TNS that is 80% better than the original value.

14

Last-Mile Recipes

Some last-Mile recipes, employed in Phase 2, stimulate and create randomness in FPGA

placements. Although random in nature, such an approach has proved to produce a consistent,

albeit limited percentage range of improvement. Other recipe adopts an iterative flow on the

checkpoint file (DCP) to achieve incremental improvements.

As mentioned earlier, use Last-Mile when you are close to meeting the timing target.

Selecting an Appropriate Parent Result

In Phase 2, first select an existing result (from Phase 1) as the “parent”. Optimizations in this

phase are based on the parent’s parameters that you select. This is usually one of the better

results, for instance, the one with the best Worst Slack or the best TNS, or the lowest

utilization.

As mentioned in a previous section, any round of Phase 1 can produce one or more results

that can be run in Phase 2, so you can actually execute both Phases concurrently. It is not

required that you wait for either Phase to complete before starting the other (see Figure 8).

The only limitations are probably the availability of compute resources and/or FPGA tool

licenses.

15

Figure 8: Concurrent Phases and Jobs

Available Last-Mile Recipes

Recipes are constructed based on the build parameters and flows provided by the Vivado

tools. Differences in those tools mean that some recipes are only available for certain tools.

 Tools What it does

Extra Opt

Exploration

Xilinx Vivado This is an iterative flow where running

placement, physical optimization and/or

routing in a loop on the same Design

Checkpoint (DCP), can yield better results.

Note that the magnitude of optimization is

dependent on the build itself, even for the same

design. We recommend this strategy when the

critical paths are consistently the same or

related.

Hot Start

Job 1

Placement Recipe

Job 2

“Good” Result

A from Job 1

Extra Opt Recipe

Job 4

Default Recipe

Job 3

Default Recipe

Job 5

“Good” Result

B from Job 3

Time Phase 1 Phase 2

“Good” Result

C from Job 3

Placement Recipe

Job 6

Deep Dive Recipe

Job 7

End

Met Timing

16

There are nine different strategies in this

recipe. Each strategy can run up to 48 hours in

nine iterations. If there are no improvements

for three consecutive iterations, the recipe stops

and the best result will be displayed.

Placement

Exploration

Xilinx Vivado As the placement seed sweep feature (also

known as Cost Table sweep in ISE) is no

longer available in Vivado, this recipe uses

other means to trigger similar behavior. There

is no upper limit on the number of strategies

you can run, but we recommend no more than a

hundred (100) and one round.

You can initiate this recipe either on an XPR or

DCP project. The results will vary, with the

XPR project giving a much larger magnitude of

values.

For more information, please refer to this

article.

Clock Margin

Exploration

Xilinx Vivado This recipe uses the “clock uncertainty”

property (as explained in Vivado UG906) to

focus the implementation tool’s efforts on the

appropriate clocks.

We recommend using this recipe on the best

results of the Default, Default Extra and Extra

Opt Exploration recipes. There is only one

round, but there are two InTime flow properties

to specify.

• Clock Margin Initial Value (ns)

• Clock Margin Incrementing Step Value (ns)

For more information, please refer to this

article.

https://support.plunify.com/en/2017/01/11/who-says-you-cant-use-random-seeds-in-vivado/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug906-vivado-design-analysis.pdf
https://support.plunify.com/en/2017/07/13/closing-timing-is-a-matter-of-fine-clock-margins/

17

Faster Convergence

The InTime Timing Closure Methodology is more efficient when more compute resources

are made available. Although compute resources have been commoditized by cloud

computing providers, many organizations are still restricted to using internal servers due to

security concerns. The following techniques help your results to converge faster even if you

have limited build machines; first by reducing the required run time per round and then the

number of rounds required to converge onto optimized results.

Likelihood of Meeting Timing

For Vivado designs, the Hot Start recipe can also be used as a litmus test of whether the

timing closure or optimization goal can be achieved. Our guideline is that if the best Worst

Slack achieved by Hot Start is around -0.5ns, then it is likely that InTime can achieve half of

that (-0.25ns) or better with subsequent recipes. Of course, the underlying assumption of this

document is that the design to be optimized is properly constrained and created in accordance

with the FPGA vendor’s recommended design methodology. Extreme circumstances like

logic utilization of more than 95% will also make timing closure more challenging.

Hot Start also serves as an assessment of a design’s “health”. For example, if the post-route

Worst Slack results are all worse than -0.8ns, it is unlikely that timing closure can be

achieved – design changes are probably necessary at that point.

Re-run Previous Strategies

In the spirit of design reuse, if (or when) a design is modified (for example, minor feature

changes or bug fixes), we recommend re-using previously known-good strategies. The “Re-

run Strategies” recipe in the General category allows you to select strategies to run again (see

Figure 9 below).

18

Figure 9: Re-run best strategies

This approach works very well when you move to a newer version of your FPGA tool. With a

newer version, design performance results may change even with default build parameters.

Instead of running InTime Optimization Phases 1 and 2 rounds from scratch, this recipe takes

advantage of possible correlations with the previous version of the synthesis and place-and-

route tool to reduce the number of builds needed to get to timing closure.

Minimize Run Time with Timing Estimates

Vivado timing estimates obtained after intermediate build steps provide a preview of the final

results, with the caveat that the accuracy of the estimates increases as the build process

approaches the routing stage. This implies that you would have to wait longer to get a clearer

picture of your final timing performance.

The InTime Timing Closure Methodology recommends using post-placement timing as a key

indicator. Right after placement, the tradeoff between runtime and timing estimate accuracy

seem to be the best. Routing is often the most time-consuming stage compared to post-

placement when the build is only halfway done. The chart below tracks Worst Slack

estimates across different build stages for a design with about 70% logic utilization on a

multi-die device. Although most of these intermediate timing estimates improve as the FPGA

tool optimizes the design, if the post-placement timing estimate is poor, the post-route result

tends to be bad as well. Instead of hoping for a black swan-type post-route result, it is

generally better to make a decision to continue or give up at the post-placement stage.

19

Figure 10: Intermediate Timing Estimates

InTime has post-placement TNS and Worst Slack thresholds that you can specify to terminate

poor builds and reallocate build resources to other strategies. More details about the

relationship between post-placement and final timing results can be found in this article.

Use Setting Filters for Specific Design Issues

Settings Filters allows the user to specify the degree of exploration for one or more build

parameters. As the designer knows the design best, they may want to specify certain build

parameters that have been known to perform better (or worse) for the design. Therefore, it

may be more productive to prime (or limit) the optimizations by specifying what parameters

should be included or excluded.

https://support.plunify.com/en/2018/03/20/how-to-reduce-your-build-time-by-50/

20

Figure 11: Settings Filters

For example, in a routing congestion scenario, the biggest impact on timing is often resource

utilization; in other words, obtaining the best possible synthesis result is essential. In such a

situation, running the Default recipe with known-good synthesis parameters in the “Locklist”

portion of the Settings Filters ensures that the same synthesis parameters are used in all the

builds.

More details about this feature can be found in the InTime documentation - “How to use

project setting filters”.

Conclusion

Timing Closure is a critical step in your design flow. Planning for timing closure is essential

for pre-empting potential issues. Design complexity has increased tremendously and it is

necessary to look beyond traditional approaches to solve these problems. With new

technologies like cloud computing, certain timing issues can be resolved without overhauling

the entire RTL or sacrificing critical functionality.

https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters

21

Appendix A: InTime Recipes

Recipes

Vivado

ISE

Descriptions

Learning

InTime Default

Y

Y
Performs first time calibration, exploration and

optimization of your design

InTime Default

Extra

Y

 Performs actions in Intime Default recipe, and run

additional optimizations

Hot Start

Y

Generates initial strategies for your design by

correlating it with other designs in the InTime

database

Deep Dive

Y

Y

Performs deeper analysis of result of your design

Explorer

Y

Explores different optimization in your design

Last-Mile

Extra Opt

Exploration

Y

Explores optimization that focus on placement,

physical optimization and routing

Placement

Exploration

Y

Explores the effect of placement adjustment on the

design

 Clock Margin

Exploration

Y Explores the effect of clock uncertainty on the

design

Map Seed

Exploration

Y

Explores the effect of map seeds on the design goal

General

Just Compile

My Design

Y

Y

Compiles the active revision in your project

Rerun Strategies

Y

Y

Rerun all marked strategies

Advanced

Custom Flow

Y

Y

Uses strategies specified by the user to compile

22

Document Revision History

 Date Changes Made

1 08 May 2018 Initial Version

	Introduction
	Understanding the InTime Optimization Phases
	Phase 1: Learning Lifecycle
	Phase 2: Last-Mile Optimization
	Combining Phase 1 & Phase 2

	InTime Optimization Process
	InTime Recipes
	Recipe Selection
	Parameter Selection
	Parameter effects at Different Build Stages
	Build parameter inter-dependencies

	The InTime Default Recipe
	Multiple Rounds and Runs
	Longer Runtimes and Aggressive Build Parameter Selections
	Goal-Based Build Parameter Selection

	The Deep Dive Recipe
	Moving to the Next Phase
	Last-Mile Recipes
	Selecting an Appropriate Parent Result
	Available Last-Mile Recipes

	Faster Convergence
	Likelihood of Meeting Timing
	Re-run Previous Strategies
	Minimize Run Time with Timing Estimates
	Use Setting Filters for Specific Design Issues

	Conclusion
	Appendix A: InTime Recipes

