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Introduction 

With advancements in FPGA architectures and technology, FPGA designs are getting more 

and more complex. The growing prevalence of high-speed interfaces, mixed-signal blocks 

and usage of 3rd-party Intellectual Property (IP) blocks are some of the factors that have 

exponentially increased the difficulties of FPGA timing closure. In response to these new 

challenges, the latest FPGA tools have evolved accordingly, possessing more advanced 

methodologies and better synthesis and place-and-route algorithms to handle modern designs. 

In particular, these improvements have led to new build parameters which have noticeable 

impact on design performance. The other inevitable consequence is an increase in overall 

build time and in compute resource demands. With newer and larger device families, build 

times and tool memory requirements may skyrocket, adversely leading to longer turnaround 

times and reduced productivity. 

To deal with these challenges, the InTime Timing Closure Methodology is a set of best 

practices and guidelines to determine the best build parameters under the condition that the 

design is currently immutable, i.e. you cannot change your RTL or constraints. InTime uses 

machine learning principles to achieve timing closure or optimization, treating the FPGA 

synthesis and place-and-route tools as black boxes and analyzing design performance across a 

whole range of build parameter variations. 

Under the InTime Timing Closure Methodology, the build process is no longer a one-

designer-to-one-machine operation. Instead it is a systematic series of calculated steps done 

by one or many designers on multiple build machines. From the resulting analysis, InTime 

deduces and recommends sets of good build parameters aimed at improving design 

performance. The guidelines in this document will help you achieve your performance goals 

in the minimum number of compilations and fastest turnaround time possible. 

 

Commonly-used terms 

• Total Negative Slack (TNS): Sum of the negative slack in your design. If 0, 

then the design meets timing. 

• Worst Negative Slack (WS or WNS): The most severe amount by which 

timing fails in your design. If positive, then there are no timing failures. 
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Understanding the InTime Optimization Phases 

InTime is a software plugin that runs FPGA tools such as Xilinx Vivado (“Vivado”) in the 

background. The FPGA tools offers many build parameters that affect an FPGA design on a 

global as well as local block level. InTime’s goal is to determine the optimum build 

parameters for the design. To deal with an enormous design space consisting of countless 

combinations of parameters, InTime uses machine learning techniques and domain-specific 

heuristics to predict and narrow down the best parameters. To maximize timing closure 

effectiveness, it is necessary to generate sufficient data points from build results and learn 

from past results. There are two phases to the optimization process: Phase 1 is the “Learning 

Lifecycle” and Phase 2, “Last-Mile Optimization”. 

Phase 1: Learning Lifecycle 

In this phase, the recommended InTime Methodology is to progressively optimize a design 

over several rounds of synthesis and place-and-route builds in an iterative “build-and-learn” 

lifecycle. 

Figure 1: Learning Lifecycle 

 

1. Use the current InTime database and train a machine learning model to predict 

combinations of build parameters. 

2. Leverage on compute power to run multiple builds concurrently. 

3. If one or more of the builds meet timing, optimization stops and your goal has been 

achieved. 

Step 1: Predict parameters 

Step 2: Run concurrent compilations 

Step 3: Learn from the results 
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4. Otherwise, InTime applies machine learning to learn from the build results and uses 

the updated data model for subsequent predictions. Repeat steps 1 to 4 if necessary. 

5. If there is at least one “good” result (“good” is defined in the “Moving to the Next 

Phase section”), proceed to Phase 2. 

The build optimization rounds are represented and displayed in InTime’s history window (see 

Figure 2). The entire history of compilations and their sequences is stored and saved in a 

hierarchical tree structure.  

Figure 2: History Window of InTime 

 

Each round is called a “job” and each combination of parameters is called a “strategy”. In the 

figure above, “calibrate_24” or “calibrate_19” are names of strategies, and a job, denoted by 

the red rectangle, can consist of one or more strategies. Each job has a “parent” result on 

which the strategies are based, and each new job adds a hierarchical level that branches out 

from its parent. 

Phase 2: Last-Mile Optimization 

The second phase begins when at least one of the results is close to meeting the performance 

target or if results have stopped improving in Phase 1. In the former case, the optimization 

relies on specific techniques that stimulate minor (compared to those in Phase 1) variations in 

the results. There are two types of optimizations in this phase: 

1. Random 

Running placement exploration, effort levels and exploiting clock uncertainties. 

2. Incremental 

Using a particular build to run post-route physical optimization iteratively. 
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The quality of results in Last-Mile Optimization is a function of compute power. Having 

more compute power ensures that the builds finish faster. However the key to obtaining good 

Phase 2 results is that you must first attain a sufficiently good result in Phase 1. 

Combining Phase 1 & Phase 2 

Since each round of the Learning Lifecycle (Phase 1) can produce multiple results which are 

worthy of Last-Mile Optimization (Phase 2), you can actually run both Phases together in 

parallel. It is not necessary to wait for either Phase to complete before starting the other (See 

Figure 3). 

Figure 3: Using Phase 1 in parallel with Phase 2 

 

Job 1 

Job 2 

 

“Good” Result 

A from Job 1 

Job 4 

 

Job 3 

  

Job 5 

  

“Good” Result 

B from Job 3 

 

Time                Phase 1                                                                         Phase 2 

“Good” Result 

C from Job 3 

Job 6 

  
Job 7 

  

End 

Met Timing 

Start 
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InTime Optimization Process 

InTime Recipes 

Within each phase, there are multiple “recipes”. A “recipe” represents an algorithm to select 

build parameters, either through machine learning, randomly or via other methods. Each 

recipe generates one or more strategies. Different recipes are used under different conditions. 

InTime comes with four recipe categories: 

1. Learning 

2. Last-Mile 

3. General 

4. Advanced 

Firstly, use Learning recipes during Phase 1 to automatically select build parameters in light 

of all the build result data accumulated in previous rounds. Employ Last-Mile recipes when 

your design is close to meeting your timing targets. General recipes include basic compilation 

of the design as is, plus a way to re-build existing strategies. Finally, Advanced recipes give 

you the flexibility to run customized strategies that can be generated outside of InTime. 

A complete list of all the recipes can be found in Appendix A.  

Recipe Selection 

For a design new to InTime, the recommended Methodology is to assume that there are zero 

data points and start with the “Hot Start” (or “Explorer” for older versions of InTime) recipe, 

a Learning recipe. The figure below shows the typical optimization process of InTime for 

Vivado. 
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Figure 4: InTime Optimization Flow for Vivado Designs 

 

 

Hot Start serves multiple purposes and consists of known-good strategies as well as strategies 

distilled from the InTime database. The first is to explore different parameters that work for 

known issues, for example congestion, high utilization and die crossings in multi-die FPGAs. 

The other purpose is to generate initial data for subsequent machine learning rounds.  

Hot Start 

Default / Default Extra 

Deep Dive 

Placement Exploration Clock Margin 

Multiple  

Rounds 

Phase 1: Learning  

Phase 2: Last Mile  

Good 

Result? 
e.g. < 100ps from  

target WNS 

Meet Timing 

Goals? 

Yes 

Yes 

End 

Extra opt 

No 

No 

Start 
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Hot Start can also be used as a litmus test to gauge whether or not timing closure is possible. 

Refer to the section “Possibility of Meeting Timing” 

Parameter Selection 

Parameter effects at Different Build Stages  

The impact to results at different build stages can vary by orders of magnitude. Refer to the 

following figure from the Vivado UltraFast Design Methodology Guide. 

Figure 5: Xilinx UltraFast Design Methodology 

 

“As shown in the following figure, early stages in the design flow (C, C++, and 

RTL synthesis) have a much higher impact on design performance, density, and 

power than the later implementation stages. Therefore, if the design does not meet 

timing goals, Xilinx recommends that you revisit the synthesis stage, including 

HDL and constraints, rather than iterating for a solution in the implementation 

stages only.” 

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_1/ug949-vivado-design-methodology.pdf
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You can see that using the appropriate parameters for synthesis will generally have a larger 

impact on the overall design performance than varying routing parameters. This is especially 

important if your design has a high Worst Slack. 

Build parameter inter-dependencies 

The FPGA tools’ user guides describe in varying levels of detail what each build parameter 

does and what aspect of performance it targets. By itself, a build parameter is usually easy to 

understand in terms of why, when and how to use it. However, it is vital to understand that 

build parameters do not operate in isolation and have complex, inter-dependent relationships 

with other build parameters.  

For example, synthesis parameter A may affect placement parameter B, or placement 

parameter B may override the effects if routing parameter C. With between 30 to 80 different 

build parameters depending on the FPGA tool, it is difficult to fully comprehend whether a 

single parameter in a particular group of parameters is good or bad. Using machine learning 

algorithms, InTime establishes a consistent and disciplined approach to deciding what is good 

or bad. 

The InTime Default Recipe 

The InTime Default (“Default”) recipe is the follow-up to Hot Start. In the absence of Hot 

Start, you can also use Default as your first recipe. This recipe is a highly flexible recipe  

Multiple Rounds and Runs 

The Default recipe requires multiple rounds and will be compute-intensive. Ideally, you 

should use enough machines to complete them as quickly as possible. The default number of 

rounds is three (3) and the number of runs (strategies) per round is thirty (30). In many cases, 

more rounds are necessary due to the need for more data points. The recommended number 

of builds is at least 100, regardless of rounds and runs. The figure below shows eight rounds 

of Default. Each round corresponds to a “job”. The green line represents the best TNS result 

for a particular round/job, and the red line shows the worst TNS for that round/job. 
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Figure 6: TNS improvements based on Default Recipe 

 

Figure 6 also illustrates how the “best result” in a round can fluctuate up and down over a 

number of rounds, as opposed to a consistent downwards trend. This is an expected artifact of 

design space exploration. 

Longer Runtimes and Aggressive Build Parameter Selections 

Compared to Hot Start, Default has a wider range of parameter selections. This is necessary 

to trigger a broader variation of results to learn from. If the design’s utilization is very high, 

strategies are more likely to over-fit due to Default’s usage of more aggressive parameters. 

The other consequence of employing aggressive parameters is an increase in build runtime. 

Because overly-long runtimes tend not to result in improved timing, InTime recommends a 

maximum runtime of 2x the original build time. Maximum runtime is an InTime tool 

property that the user can specify to have builds automatically terminated beyond a certain 

elapsed time. Refer to the user guide “Set Flow Properties” for more information 

Goal-Based Build Parameter Selection 

Default selects parameters based on your target goal, which can “Speed-TNS”, “Area” or 

“Power” in InTime’s Flow Properties section. Note that InTime does not optimize based on 

WNS, because the critical path responsible for WNS is usually different in various strategies 

and is generally not an apples-to-apples comparison between two results. Better WNS is 

achieved as an effect of optimizing for better TNS. 

No more 

improvements 

                           Phase 1                                                                   Phase 2 

https://docs.plunify.com/intime/quickstart_vivado.html#set-flow-properties
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The Deep Dive Recipe 

Compared to Default, the Deep Dive recipe (“Deep Dive”) has a much less aggressive build 

parameter selection and is typically employed after running Default. It focuses on using 

existing good results and varying about 10-20% of those parameters. Deep Dive is also 

helpful when you are still not meeting timing after Phase 2 and need to run more round in 

Phase 1. 

For example, Figure 7 shows that only eight (can be up to 15) build parameters are different 

between a Deep Dive strategy and a Default strategy in a Vivado design, whereas the number 

of dissimilar parameters between two Default strategies can be 30 or more. 

Figure 7: Differences in parameters for Deep Dive strategy 

 

Use Deep Dive when the number of good results is less than 5% compared to the total 

number of results. Another situation is when there are good outliers, i.e. one or two results are 

extremely good, this recipe will focus on those outliers and explore the optimization space 

close to them. 

Moving to the Next Phase 

The objective of the Default and Deep Dive recipes is to meet timing or get as close to timing 

closure as possible in Phase 1. Repeat this Phase until one of the following conditions is met: 

1. The design has met timing, in which case the optimization stops. 
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2. The design does not show any improvement in the first 50 compilations.  

In that event, usually the design or optimization requires very specific build 

parameters. Another option is to review location constraints, for example, IP block 

constraints or specific placement constraints. Releasing such constraints may give the 

tools more freedom to explore and optimize the final timing performance. 

In both the above two conditions, optimization ends. 

However, in the situations described below, go directly to Phase 2: Last-Mile Optimization. 

1. Improvements in the Worst Slack or in the TNS have plateaued after three or more 

rounds. This behavior happens usually from the 4th round onwards or after 100 

compilations. 

 

2. There are “good” results compared to the original timing results. Good results can be 

defined as  

a. a result within 300ps of meeting your timing targets or timing closure 

b. a Worst Slack or TNS that is 80% better than the original value. 
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Last-Mile Recipes 

Some last-Mile recipes, employed in Phase 2, stimulate and create randomness in FPGA 

placements. Although random in nature, such an approach has proved to produce a consistent, 

albeit limited percentage range of improvement. Other recipe adopts an iterative flow on the 

checkpoint file (DCP) to achieve incremental improvements. 

As mentioned earlier, use Last-Mile when you are close to meeting the timing target. 

Selecting an Appropriate Parent Result 

In Phase 2, first select an existing result (from Phase 1) as the “parent”. Optimizations in this 

phase are based on the parent’s parameters that you select. This is usually one of the better 

results, for instance, the one with the best Worst Slack or the best TNS, or the lowest 

utilization. 

As mentioned in a previous section, any round of Phase 1 can produce one or more results 

that can be run in Phase 2, so you can actually execute both Phases concurrently. It is not 

required that you wait for either Phase to complete before starting the other (see Figure 8). 

The only limitations are probably the availability of compute resources and/or FPGA tool 

licenses. 
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Figure 8: Concurrent Phases and Jobs 

 

Available Last-Mile Recipes 

Recipes are constructed based on the build parameters and flows provided by the Vivado 

tools. Differences in those tools mean that some recipes are only available for certain tools.  

 Tools What it does 

Extra Opt 

Exploration 

Xilinx Vivado This is an iterative flow where running 

placement, physical optimization and/or 

routing in a loop on the same Design 

Checkpoint (DCP), can yield better results. 

Note that the magnitude of optimization is 

dependent on the build itself, even for the same 

design. We recommend this strategy when the 

critical paths are consistently the same or 

related. 

 

Hot Start 

Job 1 

Placement Recipe 

Job 2 

“Good” Result 

A from Job 1 

 

Extra Opt Recipe 

Job 4 

 

Default Recipe 

Job 3 

Default Recipe  

Job 5 

“Good” Result 

B from Job 3 

 

Time              Phase 1                                                                          Phase 2 

“Good” Result 

C from Job 3 

Placement Recipe 

Job 6 

Deep Dive Recipe  

Job 7 

End 

Met Timing 
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There are nine different strategies in this 

recipe. Each strategy can run up to 48 hours in 

nine iterations. If there are no improvements 

for three consecutive iterations, the recipe stops 

and the best result will be displayed. 

Placement 

Exploration 

Xilinx Vivado As the placement seed sweep feature (also 

known as Cost Table sweep in ISE) is no 

longer available in Vivado, this recipe uses 

other means to trigger similar behavior. There 

is no upper limit on the number of strategies 

you can run, but we recommend no more than a 

hundred (100) and one round. 

 

You can initiate this recipe either on an XPR or 

DCP project. The results will vary, with the 

XPR project giving a much larger magnitude of 

values. 

 

For more information, please refer to this 

article. 

Clock Margin 

Exploration 

 

 

Xilinx Vivado This recipe uses the “clock uncertainty” 

property (as explained in Vivado UG906) to 

focus the implementation tool’s efforts on the 

appropriate clocks. 

 

We recommend using this recipe on the best 

results of the Default, Default Extra and Extra 

Opt Exploration recipes. There is only one 

round, but there are two InTime flow properties 

to specify. 

 

• Clock Margin Initial Value (ns) 

• Clock Margin Incrementing Step Value (ns) 

 

For more information, please refer to this 

article. 

https://support.plunify.com/en/2017/01/11/who-says-you-cant-use-random-seeds-in-vivado/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_3/ug906-vivado-design-analysis.pdf
https://support.plunify.com/en/2017/07/13/closing-timing-is-a-matter-of-fine-clock-margins/
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Faster Convergence 

The InTime Timing Closure Methodology is more efficient when more compute resources 

are made available. Although compute resources have been commoditized by cloud 

computing providers, many organizations are still restricted to using internal servers due to 

security concerns. The following techniques help your results to converge faster even if you 

have limited build machines; first by reducing the required run time per round and then the 

number of rounds required to converge onto optimized results. 

Likelihood of Meeting Timing 

For Vivado designs, the Hot Start recipe can also be used as a litmus test of whether the 

timing closure or optimization goal can be achieved. Our guideline is that if the best Worst 

Slack achieved by Hot Start is around -0.5ns, then it is likely that InTime can achieve half of 

that (-0.25ns) or better with subsequent recipes. Of course, the underlying assumption of this 

document is that the design to be optimized is properly constrained and created in accordance 

with the FPGA vendor’s recommended design methodology. Extreme circumstances like 

logic utilization of more than 95% will also make timing closure more challenging. 

Hot Start also serves as an assessment of a design’s “health”. For example, if the post-route 

Worst Slack results are all worse than -0.8ns, it is unlikely that timing closure can be 

achieved – design changes are probably necessary at that point. 

Re-run Previous Strategies 

In the spirit of design reuse, if (or when) a design is modified (for example, minor feature 

changes or bug fixes), we recommend re-using previously known-good strategies. The “Re-

run Strategies” recipe in the General category allows you to select strategies to run again (see 

Figure 9 below). 
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Figure 9: Re-run best strategies 

 

This approach works very well when you move to a newer version of your FPGA tool. With a 

newer version, design performance results may change even with default build parameters. 

Instead of running InTime Optimization Phases 1 and 2 rounds from scratch, this recipe takes 

advantage of possible correlations with the previous version of the synthesis and place-and-

route tool to reduce the number of builds needed to get to timing closure. 

Minimize Run Time with Timing Estimates 

Vivado timing estimates obtained after intermediate build steps provide a preview of the final 

results, with the caveat that the accuracy of the estimates increases as the build process 

approaches the routing stage. This implies that you would have to wait longer to get a clearer 

picture of your final timing performance. 

The InTime Timing Closure Methodology recommends using post-placement timing as a key 

indicator. Right after placement, the tradeoff between runtime and timing estimate accuracy 

seem to be the best. Routing is often the most time-consuming stage compared to post-

placement when the build is only halfway done. The chart below tracks Worst Slack 

estimates across different build stages for a design with about 70% logic utilization on a 

multi-die device. Although most of these intermediate timing estimates improve as the FPGA 

tool optimizes the design, if the post-placement timing estimate is poor, the post-route result 

tends to be bad as well. Instead of hoping for a black swan-type post-route result, it is 

generally better to make a decision to continue or give up at the post-placement stage. 
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Figure 10: Intermediate Timing Estimates 

 

InTime has post-placement TNS and Worst Slack thresholds that you can specify to terminate 

poor builds and reallocate build resources to other strategies. More details about the 

relationship between post-placement and final timing results can be found in this article. 

Use Setting Filters for Specific Design Issues 

Settings Filters allows the user to specify the degree of exploration for one or more build 

parameters. As the designer knows the design best, they may want to specify certain build 

parameters that have been known to perform better (or worse) for the design. Therefore, it 

may be more productive to prime (or limit) the optimizations by specifying what parameters 

should be included or excluded.   

 

https://support.plunify.com/en/2018/03/20/how-to-reduce-your-build-time-by-50/
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Figure 11: Settings Filters 

 

For example, in a routing congestion scenario, the biggest impact on timing is often resource 

utilization; in other words, obtaining the best possible synthesis result is essential. In such a 

situation, running the Default recipe with known-good synthesis parameters in the “Locklist” 

portion of the Settings Filters ensures that the same synthesis parameters are used in all the 

builds.  

More details about this feature can be found in the InTime documentation - “How to use 

project setting filters”. 

Conclusion 

Timing Closure is a critical step in your design flow. Planning for timing closure is essential 

for pre-empting potential issues. Design complexity has increased tremendously and it is 

necessary to look beyond traditional approaches to solve these problems. With new 

technologies like cloud computing, certain timing issues can be resolved without overhauling 

the entire RTL or sacrificing critical functionality. 

  

https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
https://docs.plunify.com/intime/setting_filters.html#how-to-use-project-setting-filters
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Appendix A: InTime Recipes 

  
Recipes 

 
Vivado 

 
ISE 

 
Descriptions 

 

Learning 
 

InTime Default 
 

Y 
 

Y 
Performs first time calibration, exploration and 

optimization of your design 

  
InTime Default 

Extra 

 
Y 

 Performs actions in Intime Default recipe, and run 

additional optimizations 

  
Hot Start 

 
Y 

 
 
Generates initial strategies for your design by 

correlating it with other designs in the InTime 

database 
  

Deep Dive 
 

Y 
 

Y 
 
Performs deeper analysis of result of your design 

  
Explorer 

 
Y 

  
Explores different optimization in your design 

 

Last-Mile 

 
Extra Opt 

Exploration 

 
Y 

 
 
Explores optimization that focus on placement, 

physical optimization and routing 

 
 

Placement 

Exploration 

 

Y 
  

Explores the effect of placement adjustment on the 

design 

 Clock Margin 

Exploration 

Y  Explores the effect of clock uncertainty on the 

design 

 
 

Map Seed 

Exploration 

  
Y 

 
Explores the effect of map seeds on the design goal 

 

General 

 
Just Compile 

My Design 

 

Y 

 

Y 

 
Compiles the active revision in your project 

  

Rerun Strategies 

 
Y 

 
Y 

 
Rerun all marked strategies 

 

Advanced 

 

Custom Flow 

 
Y 

 
Y 

 
Uses strategies specified by the user to compile 
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