
Executive Summary

Introduction

This whitepaper describes how InTime works with Xilinx software to optimize FPGA timing
performance by adjusting compilation parameters and running builds in parallel. InTime uses
machine learning to determine the best combination of synthesis and place-&-route settings
for an FPGA design. Combined with compute servers, InTime rapidly optimizes timing while
simultaneously addressing limitations on the user’s flow automation.

TM TM

TM

The traditional approach to timing optimization is to check and improve the RTL or
constraints. While this method works well, there are real-life situations where changes are
restricted due to various technical and business limitations, for example, a potential design
overhaul poses greater risk to the product release deadline. In this era of reusable design
blocks, often there are third-party IP cores in the design which cannot be easily modified.
The “worst-case scenario” solution is to simply upgrade the target device to a larger one or
to one with a faster speed grade but both come at a cost.

Figure 1

Luckily modern FPGA tools such as Xilinx’s
Vivado contain lots of knobs and switches to
help close timing. InTime’s approach is to
solve the user’s timing and other performance
issues by tuning the compilation processes of
the FPGA tools. ISE (also from Xilinx) and
Vivado software contain many synthesis and
place-and-route parameters, each with two or
more possible values that can directly affect
synthesis and place-and-route results. InTime
helps designers tap into the full capabilities of
these tools to get the required results.

In the customer provided design shown in
Figure 1, the X-axis represents batches of
compilations with different synthesis and
place-and-route parameters and the Y-axis

shows the absolute value of the failing Worst Slack (0 means timing pass) in nanoseconds.
Here you can see that InTime successfully reduces the failing Worst Slack of a design from
-450ps to 0ps, achieving the timing target by just changing compilation parameters, without
any change in the design.

Optimizing design performance
with InTime and Xilinx tools

Understanding the InTime Flow

Steps to optimize a design

To reduce the time required to converge on a result, InTime comes with an initial database
that contains meta-data. This meta-data is built over time using different designs to help us
determine what types of parameters are suitable for different designs. The aim is to narrow
down the vast set of parameters to pick only significant parameters that will be most effective
for a particular design.

The reason for categorization is because compilations are highly intensive compute
processes. The run time “cost” of obtaining new data is high (and human patience is in short
supply). Each recipe can not run indefinitely, so there is a need to limit the number of
learning runs based on result improvements. Once the results start to plateau (the ROI for
improved results based on the time spent decreases), users switch to the “Last Mile” recipes.
The “Last Mile” recipes are highly random techniques that work better the closer the design
is to the target performance goals. For example, using the best result attained so far as a point
of reference, “Last Mile” recipes will randomize the placements of the different logic elements.

In many cases, the user usually leaves the synthesis and place-and-route parameters at
default values. Not many users attempt to change these parameters as there is little
understanding of their actual impact. This task is further complicated by the fact that the
parameters are inter-dependent and may cause timing to get worse if the wrong ones are used.

InTime uses machine learning techniques to efficiently explore the effects of parameter set
variations (strategies) in the FPGA compilation process. The techniques described below
focuses on generating sufficient data points before converging on the performance peaks.

One key concept is the “recipe”. InTime classifies machine learning techniques into
"recipes", which are further categorized into “Learning” and “Last Mile” recipes.

Learning Recipes
The more data, the better it is

Last Mile Recipes

Step 0: Model the design

The better the “parent” result, the better
it is. More data does not help.

In this step, InTime generates compilation parameters (also known as “strategies”) in each
round of execution. The designer should configure each round to run between 10 to 30
compilations. Different recipes are more suitable than others, based on the number of data
points (compilation results) available.

Learning and analysis happen only at the end of each round and at the beginning of the next
round. As a guideline, InTime needs to analyse around 100 data points over 3 to 5 rounds to
reach a good local maxima (results closer to 0ns TNS or positive WNS).

If the results do not show significant improvements, more compilations may be required as
the recipe has not reached a local maxima. However, if timing has improved significantly
(compared to the original results) and the improvements have plateaued, then it is time to
switch recipes (see “Deep Dive”).

Step 1: Generate data

Once a few good results have been obtained, or as soon as the improvements have slowed
down, the “Deep Dive” recipe is the next recipe to use. “Deep Dive” examines the current
crop of results and does an in-depth analysis of the local maxima as well as its surrounding
points, yielding about 10% improvement in results in a shorter amount of time compared to
the recipes before it. Of course, without the results from earlier recipes, Deep Dive will not be
as effective. (Figure 2)

Step 2: Use “Deep Dive” Recipe

Explorer
(Vivado)

No
existing

data

0 data points 0 to 300 data points 150+ data points
Must have some good

results

Return only the good
results

(top 20%)

Default
Little or

no existing
data

Deep
Dive

Some
good
data

“Back to
the future”

Only
good
data

Figure 2: Default versus Deep Dive recipe

Default Recipe Deep Dive recipe

Figure 3

InTime & Vivado in the cloud
Reduce the time needed to reach your timing targets using InTime within the Amazon Web
Services (AWS) cloud. By doubling your concurrent runs, you can halve the time required to
complete your optimization.

InTime partners with Xilinx to provide AMIs with all software licenses pre-installed. This
allows you to quickly start an instance and run your FPGA projects in the cloud without any
prior installation.

Conclusion
Choosing the right set of synthesis and place-and-route parameters is a powerful technique
to achieve the target design performance, and obtain the most benefits from FPGA tools like
Vivado. However, it is impossible to try every single set of parameters. Converging quickly
on the right combination of parameters can yield drastic results as shown in Figure 3
(–3000ns to -3ns for Total Negative Slack). Using the cloud can also reduce the total time
required to achieve ideal results.

Finally, the Last Mile category of recipes uses only specific Vivado settings that are
pseudo-random and highly sensitive to code changes. Depending on the design, such
recipes can generate only a few or a large number of compilations. For example, Placement
Exploration can easily go up to 100 compilations whereas Extra Optimization is limited to 9.

Step 3: Auto Placement or Extra Optimization

Benchmark = 3290.51

Worst Result
Median
Best Result

https://aws.amazon.com/marketplace/pp/B071RLGN5P?qid=1504081440437&sr=0-1&ref_=srh_res_product_title

