
Improving Classification Accuracy of a Machine

Learning approach for FPGA Timing Closure

Que Yanghua, Nachiket Kapre

School of Computer Engineering

Nanyang Technological University

Singapore, 639798

nachiket@ieee.org

Harnhua Ng, Kirvy Teo

Plunify Inc.

82 Geylang Lor 23

Singapore 388409

harnhua@plunify.com

Abstract—
We can use Cloud Computing and Machine Learning to help

deliver timing closure of FPGA designs using InTime [2], [3]. This
approach requires no modification to the input RTL and relies
exclusively on manipulating the CAD tool parameters that drive
the optimization heuristics. By running multiple combinations of
the parameters in parallel, we learn from results and identify
which parameters caused an improvement in the final results.
By systematically building a classification model and training
it with the results of the parallel CAD runs, we can build an
accurate estimation flow for helping identify which parameters
are more likely to improve the timing. In this paper, we consider
strategies for improving the predictive accuracy of our classifier
models to help guide the CAD run towards timing convergence.
With ensemble learning we are able to increase average AUC
score from 0.74 to 0.79, which could also translate into 2.7×
savings in machine learning effort.

I. INTRODUCTION

InTime [3], [2], [5] is a plugin for Xilinx and Altera FPGA

CAD tools that allows an FPGA designer to deliver timing

closure for their digital design in an automated manner. With

dropping computing costs it becomes possible to trivially

spawn hundreds of FPGA CAD runs in parallel for potentially

faster convergence. Microsoft Bing FPGA acceleration team1

uses the parallel capacity of the Azure cloud platform to run

concurrent seed exploration of the same design to exploit

statistical variation in the performance of the FPGA CAD

tools. InTime goes beyond this simplistic approach by learning

the exact design-specific combination of FPGA CAD tool

parameters that deliver timing closure for that particular de-

sign. A typical CAD tool may expose hundreds of parameters

in the synthesis, technology mapping, and place-and-route

steps. For example, Quartus 14.1 exposes hundreds of boolean

parameters resulting in an intractably large search space of

≈2100s possible combinations. Instead of relying on brute

force exploration, InTime cleverly searches a subset of this

space by choosing which combinations to evaluate with the

assistance of machine learning routines.

The key challenge for InTime’s machine learning routines

is the accuracy of predicting which combinations of CAD

parameters to explore. This is particularly important as FPGA

CAD runs are slow and can take hours to days of runtime on

1FPGA 2016 Designer’s Day invited talk by Eric Chung.

modern designs. Furthermore, we want to quickly converge to

the fastest possible design to satisfy time-to-market targets of

our end customer. Another advantage of faster timing closure

is the reduction in the number of parallel CAD runs that we

must invoke thereby reducing cloud computing costs.

In this paper, we configure and compare various classifica-

tion algorithms that can work well for the structure of the data

generated for FPGA timing closure problems. A key challenge

that is unique is the presence of very limited data (100s of

runs) when compared to the datasets used in the mainstream

machine learning community as well as the separation in the

final timing scores (very noisy).

The key contributions of this report include:

• Configuration and optimization of the classifiers to im-

prove the accuracy of prediction while reducing false

positive rates.

• Quantification and characterization of these optimizations

across various open-source benchmarks in terms of ma-

chine learning metrics (e.g. ROC) and FPGA outcomes

(e.g. iteration counts).

II. CONFIGURING MACHINE LEARNING

The initial InTime release relied on simple Naı̈ve Bayesian

classifier to organize the learning process. In that case, we

generated suitable candidate CAD parameter combinations by

testing against trained model. With this approach, InTime was

still able to reduce timing scores by 10× [2] in under 200

runs of the CAD tool across a range of open-source FPGA

designs. While these results were promising, there was room

for improvements. Our dataset sizes are fairly small (i.e. 200-

400 samples per design, compared to other millions of records

in big-data applications) due to the long runtimes of the CAD

tools and finite computing costs at our disposal. What makes

this even more challenging is the finicky nature of the resulting

timing slacks to even the slightest change in input CAD

parameter conditions. In order to overcome these constraints,

we explore a broader set of classification algorithms.

• Logistic regression: (R function LogitBoost)

Regression-based techniques (e.g. linear regression) is

often used to predict quantitative outputs e.g. TNS score.

However, our initial attempts at using linear regression

had limited success due to the unpredictability of the TNS

scores. Thus, we switched to logistic regression where each

CAD combination is simply evaluated as GOOD or BAD

with reference to a threshold TNS score.

• Bagging: (R function treebag) Decision tree model uses

a branch-split structure and segmentation of the predictor

space to best fit the observed data. This manner of partition-

ing naturally fits intuition that certain combinations drive

us towards convergence and certain combinations make

timing scores worse. However, decision trees alone have

low accuracy since it highly depends on the region splitting

decisions made in each branch node. We can improve the

accuracy of decision trees using Bagging. This is also a

tree-based algorithm, but constructs multiple trees f̂ b(x);
one in each sampled subset of the input observations. The

resulting classifier averages (1

B
) across these trees, thereby

lowering variance and achieving higher prediction accuracy.

• Random Forest: (R function rf) Random Forest is an

adaptation of Bagging where we want to account for correla-

tions between the input CAD parameters and mitigate noises

caused by irrelevant features. Random Forest considers

random subsets of features x of the input observations X

(unlike Bagging) and constructs a decision tree in each sub-

set (like Bagging). Thus, the influence of minority predictors

is suppressed and the prediction is more reliable.

• Support Vector Machine (SVM): (R function

svmRadial) Support vector classifiers construct hyper-

planes to separate the data into binary classes. SVMs

support non-linear boundaries between classes by suitably

enlarging this space to fit the non-linearity using the kernel

function K. It is computationally intensive as we must

construct inner products between all support vectors xi in

S. While this is a computationally-complex classifier, the

runtime is still marginal compared to the CAD time.

• Neural Network: (R function nnet) Neural network is

a two-stage classification model, inspired from biological

networks of neurons. In the first stage, we construct derived

features Zm through linear combinations of the inputs X

using a suitable activation function σ. In the second stage,

the output Y is then modeled with linear combinations

of these intermediate features Y . The output function gk
then transforms the prediction T into the eventual classifier

outputs. Neural networks are harder to train and have many

configurations to manage for correct evaluation.

• Stack: (code name stack) In this strategy, we run all the

algorithms described here multiple times using the timing

slack database. This allows us to train a sub-model per

classification algorithm. We then train a second-level model

that combines the predictions of the sub-models using linear

regression (Generalized Linear Model).

• Ensemble: (code name ensem) This is another technique

that also requires running all algorithms, but instead of

using a second level combiner model, we simply compute

a linear weighted average of the sub-model predictions. It

is computationally cheaper than Stack but can often deliver

similar quality of result.

III. RESULTS

We implemented the improved machine learning routines

as plugins for InTime using caret [1] packages in R [4].

We consider OpenCores benchmarks in this evaluation. These

benchmarks were compiled using Quartus 14.1 and mapped

to Cyclone devices.

To compare the range of different machine learning tech-

niques on our benchmark set, we evaluate the respective trends

in the ROC curves. We want the good classifiers to deliver

ROC curves that lean towards the top-left quadrant of the plots

with high true positive rates and low false positive rates.

In Fig. 1, we show the effect of classification algorithm

on final quality. Across our set, Stack emerges as the most

stable and robust algorithm for the FPGA CAD timing score

dataset. There is a high density of high TPR and low FPR

when considering Stack. The Logistic Regression and Neural

Network have relatively poor performance with the curves

trending close to the diagonal. Along the diagonal, the machine

learning routine is performing no worse than a random coin

toss. Other routines such as Bagging, Random Forest and

Bucket methods have a few really good outlier curves but

perform mid-range in the exploration with average distribution

of curves away from the top-left quadrant. Decision Tree

implementation tends to simultaneously jump to high true

positive and false positive rates resulting in poor performance.

In Fig. 2, we evaluate individual circuit benchmarks to com-

pare the effectiveness of different algorithms for each design.

In the plot, we highlight the result of Stack algorithm in bold.

As we see, it consistently delivers top-of-the-line performance

over the complete classification range. In small stretches, it

cedes its dominance for vga, viterbi and flow benchmarks. In

this set, the viterbi and flow benchmark (and to some extend

xge) have tough-to-meet timing constraints to begin with and

stubbornly deliver high false positive rates (despite their high

accuracy) for most machine learning algorithms. These curves

are closer to the diagonal and are not particularly amenable to

the machine learning approach. At present, there are realistic

limits to the extent of timing margins that InTime can squeeze

out of the tools as some constraints may be infeasible. In future

work, we hope to be able to predict a realistic timing target

window our tools can target.

0

2

4

6

ae
s−

12
8

BeM
ic
ro

de
c−

vi
te

rb
i

ei
gh

t−
bi
t

pi
pe

lin
e

SO
C

vg
a−

en
h−

to
p

VIP

xg
e−

m
ac

It
e

ra
ti
o

n
 R

a
ti
o

baseline

ensem

glm

LogitBoost

nb

nnet

rf

stack

svmRadial

treebag

Fig. 3: Iteration Count Reduction when using new algorithms

vs. original InTime baseline.

2

ensem glm LogitBoost

nb nnet rf

stack svmRadial treebag

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

aes−128 BeMicro dec−viterbi flow mkSwitch pipeline SOC VIP xge−mac

Fig. 1: ROC curves for the various Machine Learning algorithms across various benchmarks. Good ML algorithms should

have ROC curves in the top-left quadrant of the plot. Ensemble methods such as Stacking and Bucket work best and have high

density in the top-left quadrant. The tree-based methods such as Bagging, Random Forest also have a few good solutions in

the top-left quadrant of the plot. Neural Network and Logistic Regression are closer to the diagonal and slightly less effective.

Finally, in Figure 3, we show the reduction factor in number

of CAD iterations required when comparing original InTime

baseline against our improved approach. As we see, we are

able to deliver a 2–6× (mean 2.7 × for Stack method)

reduction in iteration counts. This means that we can build

a model that is as accurate with far less training samples,

which are essentially CAD running records harvested from

the cloud farm; and we can save a lot of time and computing

resources as a result. This shows how exploiting the unique

characteristics of the FPGA design as part of the CAD flow

can not only improve AUC scores but also translate into wins

for acceleration of timing closure.

IV. CONCLUSIONS

In this paper, we show how to improve the predictive

accuracy of InTime’s classification routines to help speedup

timing closure for FPGA designs by purely manipulating the

CAD tool parameter assignments. Specifically, we show how

to configure and use the Stack-based approach that combines

the predictions of multiple classification algorithms to boost

overall robustness of the prediction. With this technique, we

gain an AUC score boost of 0.05 on average. This improve-

ment also translates into a 2.7× reduction in time to timing

closure.

3

●

●

●

●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

● ●

● ● ●

● ● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

● ●

● ● ●

●

●

● ● ●

● ●

● ●

●

●

● ●

●

● ● ● ● ● ● ●

● ●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ● ● ●

●

● ●

●

● ● ● ● ● ●

● ● ●

●

● ●

●

● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

●

● ● ●

● ● ● ● ●

●

●

● ●

● ● ●

●

● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ● ● ● ● ● ●

●

● ● ●

● ● ● ●

● ● ●

● ● ●

● ●

● ● ● ● ● ●

● ●

●

●

●

●

●

● ●

●

●

● ● ● ●

● ● ●

●

●

●

● ● ●

●

● ●

● ● ● ● ● ●

● ●

● ● ● ●

●
●
●
●
●●

●●
●
●●

●●●
●
●●

●
●
●
●
●
●●

●
●
●
●
●●

●●
●●

●●
●
●
●
●
●
●●

●
●●

●
●
●
●
●
●
●
●
●
●
●●●●

●●●
●
●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●

●

●

●

● ●

●

● ●

● ●

● ● ● ● ●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

●

● ●

● ● ●

● ●

● ● ● ● ● ●

●

●

●

● ●

● ● ●

●

●

● ● ●

● ● ● ● ● ● ● ●

aes−128 BeMicro dec−viterbi

flow mkSwitch pipeline

SOC VIP xge−mac

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ensem glm LogitBoost nb nnet rf stack svmRadial treebag

● ensem stack

Fig. 2: ROC curves for the various benchmarks across different Machine Learning algorithms. Almost all other benchmarks

do particularly well, ROC curves are closer to the top-left corner than the diagonal, especially when using Stack (shown in

bold black) or Bucket algorithms. There are a few cases where they do not pick the winning or best solution but those cases

are infrequent and the penalty for the choice is not catastrophic. Benchmarks such as bitcoin, flow and viterbi are hard for

timing closure, and show performance closer to the diagonal. These cases are scoring high in certain classification thresholds,

but deliver poor convergence due to skew (most classifications are in the negative class).

REFERENCES

[1] M. K. C. from Jed Wing, S. Weston, A. Williams, C. Keefer, A. Engel-
hardt, T. Cooper, Z. Mayer, B. Kenkel, the R Core Team, M. Benesty,
R. Lescarbeau, A. Ziem, and L. Scrucca. caret: Classification and

Regression Training, 2015. R package version 6.0-52.
[2] N. Kapre, B. Chandrashekaran, H. Ng, and K. Teo. Driving timing conver-

gence of fpga designs through machine learning and cloud computing. In
Field-Programmable Custom Computing Machines (FCCM), 2015 IEEE

23rd Annual International Symposium on, pages 119–126, May 2015.
[3] N. Kapre, H. Ng, K. Teo, and J. Naude. Intime: A machine learning

approach for efficient selection of fpga cad tool parameters. In Pro-

ceedings of the 2015 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA ’15, pages 23–26, New York, NY,
USA, 2015. ACM.

[4] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2015.

[5] Q. Yanghua, C. Adaikkala Raj, H. Ng, K. Teo, and N. Kapre. Case for
design-specific machine learning in timing closure of fpga designs. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, FPGA ’16, pages 169–172, New York, NY,
USA, 2016. ACM.

4

