
 is an expert software, driven by
machine-learning, that helps RTL designers write
better code to solve timing failures and improve
design performance. At its heart is a pattern
recognition engine that identifies “bad” RTL code,
meaning Verilog and VHDL that cause timing or
performance problems. Kabuto prioritizes critical
paths in a design and provides intelligent
recommendations on how to fix the corresponding
RTL segments. The designer makes the final decision
to accept or edit the recommended changes. Kabuto
works together with InTime as well.

RTL synthesis and place-and-route tools from different vendors process code differently, so what is “bad” code for one vendor’s tools
may not cause performance issues in another. On top of this, different types of device families can require RTL coding styles that are
not uniform. Kabuto recognizes and automatically accounts for such disparities.

Kabuto

Kabuto analyzes the timing reports of a compiled design and focuses on
the critical paths. From the critical path data, Kabuto zeroes in on the RTL
code segments that are relevant to each failing path. Kabuto figures out
what the problems with each particular code segment are and provides the
necessary code fix recommendations to the designer. The designer
assesses the validity of the recommendations and chooses to accept them
or manually edit the RTL before saving the design.

How it works

Read
Timing
Reports

Extract
Critical
Paths

Identify
Critical
Code

Recommend
RTL

Changes

Designer
Accepts
Changes

Smart pattern recognition engine detects
complex issues, such as pipelining

Analysis and recommendation engine
provides education and guidance

Code style correction to ease and assist
transition to new designs and tool chains

Customizable pattern recognition engines
incorporate custom RTL guidelines with
different design goals

Kabuto detects various RTL issues. Examples of what Kabuto can detect includes:

Key features & benefits

What it can detect

A: Multiply-by-a-constant
Kabuto uses a conversion algorithm that produces a new expression using shift and addition/subtraction operations to replace a
multiply with a constant operation. This proves to be more synthesis-friendly in term of timing.

Beta Datasheet

Detected

Out1 = in1 * 60; Out1 = (in1<<6) – (in<<2);

Kabuto Recommended Change

B: Add-pipeline-stage
Pipelining breaks up the long delay path into smaller pipeline stages separated by registers. Kabuto also detects and corrects pipeline
dependencies to prevent hazards.

Detected

 assign wsumbuf0[i] = addt[8*i] + addt[8*i+1] +
addt[8*i+2] + addt[8*i+3] + addt[8*i+4] +
addt[8*i+5] + addt[8*i+6] + addt[8*i+7];

always @(posedge clk) begin
 wsumbuf0[i] <= addt[8*i] + addt[8*i+1] +
addt[8*i+2] + addt[8*i+3] + addt[8*i+4] + addt[8*i+5]
+ addt[8*i+6] + addt[8*i+7];
end

Kabuto Recommended Change

N logic levels

N/2 logic levels N/2 logic levels

D Q D Q

D Q D Q D Q

Detected (pipeline dependent signals)

always @(posedge clk) begin
 if (!rst)
 led <= 'b0;
 else
 led <= ^{dout,sumd};
 end

reg dout$0;

always @(posedge clk) begin
 dout$0 <= dout;
end

always @(posedge clk) begin
 if (!rst)
 led <= 'b0;
 else
 led <= ^{dout$0,sumd};
end

Kabuto Recommended Change

C: If-no-else lead to unintentional latches
Latches can cause timing problems and even race conditions, so compilers will generally warn about them. One common cause of
unintentional latches is the lack of an "else" clause in an "if" statement.

Detected Kabuto Recommended Change

process(vi, en)
 begin
 if en = '1' then
 for i in vi'range loop
 vo(i) <= vi(nbits-1 - i);
 end loop;
 end if;
 end process;

 process(vi, en)
 begin
 if en = '1' then
 for i in vi'range loop
 vo(i) <= vi(nbits-1 - i);
 end loop;
 else
 for i in vi'range loop
 vo(i) <= 'X';
 end loop;
 end if;
 end process;

About Plunify

Plunify Pte Ltd
Email: tellus@plunify.com

United States
4962 El Camino Real #225
Los Altos, CA 94022
USA

China
Room 1737, Level 17, Raffles
City Tower 2, No. 3 Section 4,
South Renmin Road, Wuhou
District, Chengdu, 610041,
China

Plunify helps chip design companies optimize FPGA designs with big data and machine learning. Plunify is based in Singapore and in the United States.
Quartus is a registered trademark of Intel, Inc. Vivado is a registered trademark of Xilinx, Inc. Kabuto is a registered trademark of Plunify Pte Ltd

Singapore
82, Lorong 23 Geylang,
Atrix Building, #05-14,
Singapore (388409)

Kabuto comes with a highly sophisticated RTL recognition engine that
can be customized to identify various RTL issues, such as area, power.

Many organizations have internal coding guidelines or training to
adhere to specific standards. These standards can be different for
different platforms such as FPGA versus ASICs, or coding styles for
newer FPGA device families.

Kabuto can be used as a tool to assist and help designers write better
RTL to target the different platform and devices.

Supported OS: Windows 7 and above. Ubuntu and Centos

Specifications

System requirements

Highly customizable recognition engine

Licensing

Minimum 1GB RAM, with 4 GB+ virtual memory
At least 100MB free disk space for Kabuto software
Processor: Intel i3 CPU or similar
Java: Java Runtime Environment (JRE 1.6 and above)

Annual license priced according to the number of users/seats

Supported FPGA tools: Quartus 15 and above. Vivado 2015.4 and above

