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Abstract—
Machine Learning approaches for automated selection of

FPGA CAD tool parameters have been demonstrated to be
useful for timing closure of FPGA designs [3], [4]. This is
achieved by running the CAD tool multiple times with small
variations in the the CAD parameter values. The timing slack
from each run is recorded into a database along with all input
parameter selections to help train a classifier. By progressively
running more instances of the tool, we can help drive the CAD
tool towards timing convergence. However, a naı̈ve approach
that uses simplistic off-the-shelf learning libraries and uses all
features (CAD parameters) is inappropriate. This can often miss
opportunities inherent in specific design properties and nuances
of the FPGA device family and tool versions while possibly
overfitting the models and trapping the system into a local
minima. In this paper, we show how to combine design-specific
feature selection with a set of classification approaches that are
configured to improve model quality and reduce the number
of iterations required to deliver timing closure. We show how to
systematically tailor the correct subset of features for each design
to deliver robust results. Using design-specific feature selection,
we prune the set of CAD parameters used for constructing the
classifier model down from ⇡80 to ⇡8–22 features. We show
improved AUC scores (Area under ROC curve) as high as 0.83
which represents an improvement over the baseline InTime scores
of 0.74 earlier. We use a set of large industrial designs to show
these results and lower the number of CAD iterations required
for convergence by 3⇥ (mean) using our proposed approach.

I. INTRODUCTION

FPGA CAD tools navigate the large optimization space of
mapping RTL designs to the FPGA fabric through extensive
use of tuneable heuristics. As each step of the CAD mapping
flow i.e. synthesis, packing, placement, and routing is typically
NP-complete, the use of heuristics is necessary to generate
FPGA bitstreams in a reasonable amount of time. Modern
FPGAs support millions of LUTs, thousands of DSPs and
on-chip Block RAMs, along with various exotic hardware
features, resulting in compilation times have risen to hours
or days. When dealing with timing constraints in the design
flow, the FPGA CAD tools are often used iteratively to de-
liver timing closure through and edit-compile-debug approach
further exacerbating the challenge. Modern releases of the
FPGA CAD tools now expose hundreds of tuning parameters
as hints for helping experienced developers drive the heuristics
on large designs with tough constraints. The combination
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Fig. 1: Organization of InTime Flow.

of long runtimes and complex configuration options make it
increasingly difficult for a human developer to manage this
design process.

In this study, we use InTime [3], [4], a plugin for FPGA
CAD tools, that can automatically select tool parameter assign-
ments for each design through the effective use of machine
learning heuristics and cheap cloud computing resources.
While a modern CAD tool exposes hundreds of parameters,
InTime identifies the set of 25 parameters that may be relevant
based on design-specific ranking. It then iteratively attempts
a series of parallel CAD runs with different CAD parameters
combinations that lead to timing closure. Considering boolean
parameters, this still represents a search space of ⇡ 225

combinations (down from a possible 2100s candidates).
This tool has been demonstrated to work successfully on

large industrial problems. For instance, one particular tough
problem handled by InTime was a UDP offload accelerator
supporting 2⇥100GbE L2 frames and 1⇥25GbE UDP frames
at 390 MHz clock. This was a large design mapped to a modern
Xilinx Ultrascale xcvu095 device with 25% logic utilization



(chip capacity: 500K LUTs and 1M FFs). The design was
already deeply pipelined and highly optimized to manage the
strict 390 MHz timing constraint. Despite their best effort and
availability of spare resources (75% free), developers were
unable to tackle the timing constraint solely through pipelining
and were left with 100ps of negative slack. Each compilation
took 8–9 hours on wall clock time when using Vivado 2015.2
CAD tool on a modern 16-core 64b CentOS 6.5 platform. With
the use of InTime, it was possible to deliver timing closure in
a fully-automated manner in under 2–3 days of exploration.

In this paper, we focus on reducing the number of iterations
required to achieve timing closure. This requires indirectly
exploiting design-specific properties i.e. richness of DSP use,
path delay profiles, extent of pipelining to guide the feature
selection process. Feature selection helps reduce the complex-
ity of the predictive model used to evaluate goodness of a
particular combination of CAD parameters. Typically, fewer
features lead to poor prediction accuracy while excess features
lead of overfitting and resulting accuracy drop. We further
use a previously developed robust classifier [13] by exploring
multiple learning algorithms that work well with limited num-
ber of data samples. FPGA CAD runtimes are long, and even
when cloud computing resources are abundantly available, it
is prudent to spend those resources efficiently on useful work.

The key contributions of this report include:
• Quantification of the necessity of machine learning for

delivering timing closure in FPGA designs on complex
modern FPGA CAD tools.

• Development of a feature selection approach that helps
customize the subset of features for each design to help
improve accuracy of the learning routines.

• Quantification and characterization of these optimizations
across various industry-strength benchmarks in terms of
machine learning metrics (e.g. ROC, AUC) and FPGA
outcomes (e.g. TNS trends, iteration counts).

II. BACKGROUND

As shown in Fig. 1, InTime is an iterative algorithm orga-
nized as a series of concurrent CAD runs. Each round, which
consists of multiple concurrent runs, is an opportunity to
generate candidate CAD parameter combinations and acquire
data for analysis. Within each round, InTime uses a supervised
learning approach to train classifiers that evaluate the effec-
tiveness of a given combination of CAD parameter selections
towards reducing timing slack. The baseline reference used for
training the classifier is derived from the default configuration
of the FPGA CAD tools with unmodified vendor-provided
presets. This can be formalized as shown in Fig. 2.
• n is the total number of CAD tool parameters. i.e. Quartus

14.1 exports ⇡80 parameters
• p is the number of CAD tool runs in a given round
• i is a CAD tool parameter 1  i < n.
• j is an instance of running a CAD tool 1  j < p.
• The InTime trials generate a matrix X that stores the

assignments for the different CAD tool parameters, where
xij corresponds to each CAD tool parameter and indicates
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Fig. 2: Various steps of building and improving the classifier
fr in each learning round r. Multiple parallel CAD iterations
are organized into rounds. Results from a round are collected

together and used to updated the classifier function fr.

if that parameter is set. e.g. if xij = T , the parameter i is
set during the CAD tool execution j, and vice versa.
• Vector Y records the resulting timing slack results yj from
p parallel trials of the CAD tool.
• InTime divides the set of experiments p into multiple
rounds r to ensure the search space is covered in a design-
specific, adaptive manner.
One may be tempted to use this data X and Y to build

a predictive model for directly estimating the value of timing
slack for a new, untested combination of CAD tool parameters.
Unlike modern high-level synthesis, packing and placement
tools that use a predictive delay (and resource) model based
on a continuous outcome predictor, InTime reduces this to a
mere classification problem where we identify whether each yj

timing score is either GOOD or BAD. This leads to a supervised
learning approach; we compare the timing slack of a given
execution against a baseline default run of the CAD tool to
judge the goodness of a given combination. This classification
function f , shown in Fig. 2, is the one that can explain the
dataset presented and is periodically refined when new data is
added to the tables. The challenge for InTime is to train this
classifier model for (1) high accuracy and low false positive
rates, (2) requiring the fewest possible set of samples p (thus,
moderating the use of compute costs required to deliver this
result).

For a concrete example of InTime in action, consider the
UDP offload accelerator design we introduced earlier. We
show the improvement in WNS scores over time in Figure 3.
We are able to lower the WNS scores from 300 ps down to
83 ps within a few days using machine learning with eventual
timing closure delivered through a seed exploration in another
day. InTime started optimizing the design without any prior
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Fig. 3: Worst-Case Negative Slack improvements vs. time for
UDP offload engine. Strategy is the machine-learning driven

improvement in WNS scores, Seeds if the final seed
exploration to mop up remaining slack.

knowledge and relied on internal calibration data for the
target device and CAD tool version. From the developer’s
perspective, they launch InTime with the design RTL along
with timing constraints and let the tool handle the rest of
the flow. Thus, the complete flow is fully automated, with
InTime managing the machine learning rounds as well as the
seed exploration to deliver timing closure. As we can see in
the Figure, the machine learning approach is used to bring
WNS slack withing a threshold first. The final timing slack is
recovered without relying on machine learning through seed
exploration rounds called multiple cost tables in ISE which
are parallel, or iterative Vivado runs which are sequential1. In
this particular case, we use Vivado iterative placement loop for
three turns to deliver the final timing closure from the 83 ps
design as the starting point.

III. CONFIGURING MACHINE LEARNING

InTime originally used the simplistic Naı̈ve Bayesian clas-
sifier (nb) to drive the learning process and rank the relative
importance of the CAD tool parameters while filtering the
most important ones using Principal Component Analysis
(PCA). The Naı̈ve Bayes classifier operates by building a
probability vector Pr where pi is the probability that the ith
CAD parameter is set. We refine these probabilities for each
observation (CAD run) by determining when the timing score
is better than the threshold. Once built in a given round, we can
then generate suitable candidate CAD parameter combinations
by testing against this model. Using this approach, InTime is
able to reduce timing scores by 10⇥ [3] in under 200 runs of
the CAD tool. While these results were promising, our work
improves the original InTime approach in the following ways:

• Learning Algorithm: A variety of mature classifier al-
gorithms are available that work well under different cir-
cumstances (quality, quantity) of the input dataset. In this

1The regression to an iterative, sequential approach is a step back for Vivado
if speed to timing closure via parallelization of seed explorations is desirable.

paper, we explore a suitable set of candidate algorithms
suitable for FPGA CAD datasets. Our dataset sizes are
fairly small (i.e. 200-400 samples per design, compared
to other millions of records in big-data applications)
due to the long runtimes of the CAD tools and finite
computing costs at our disposal. What makes this even
more challenging is the finicky nature of the resulting
timing slacks to even the slightest change in input CAD
parameter conditions.

• Feature Selection: While InTime relied solely on PCA
analysis to identify useful features, we exploit design
knowledge of the particular problem to help choose
required parameters. This approach helps us properly
tune the number of important parameters as desirable
for optimizing accuracy metrics while simultaneously
reducing the number of CAD parameter combinations
that are considered productive for search.

We move beyond the simplistic approach of original InTime
and consider (1) design-specific features selection, coupled
with (2) design-specific classification heuristics [13] to deliver
faster timing closure.

A. Feature Selection

Feature selection is a process that aims to reduce the number
of features (CAD parameters in our application) used for
model construction. It decreases the chance of overfitting
and delivers boosted performance as well as faster time to
convergence. We consider the importance of each feature
individually and use statistical metrics to quantify magnitude
of change in classifier performance when that particular feature
is used. It is somewhat analogous to sensitivity analysis in
design engineering. The intuition here is that each FPGA
design has unique timing and device utilization characteristics
that interact differently with the CAD heuristics. Thus, instead
of simply using all available CAD parameters for building
the predictive model, we prune the set of features to only
consider those that align with design properties. For instance,
a DSP-rich design would benefit from DSP-centric technology
mapping heuristics in the CAD tool. The exact subset of
features that may matter varies with the design and we discover
that in most cases, ⇡10–20 features are necessary for boosting
classifier performance. However, it is important to note that
the combinations that we explore may still modify the less
important parameter values. This coverage is useful to avoid
the model getting stuck in a local minima during the parallel
search. The primary advantage we gain through parameter
pruning is to boost predictor accuracy and focus the search
in a productive space of CAD parameter combinations. We
enumerate the various feature selection functions we evalua-
tion in Table I and briefly describe how they work as follows:
• One Rule: (R function oneR) This feature selector creates
association rules by identifying the correlation between a
particular feature and its impact on the output class. It builds
a simple frequency table and ranks the various features
based on their impact on the final classification outcome.
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TABLE I: Feature Selection Equations.

Selection Formula

OneR max(class)
Information Gain H(Class) +H(Feature)�H(Class|Feature)
Relief S = 1

2

Pl
k=1 d(Xk �XMk

)� d(Xk �XHk
)

After we run the initial round of multiple CAD runs, the
resulting data is used to extract the parameter list.

• Information Gain: (R function information.gain)
Here we use a more sophisticated approach for ranking
features by computing entropy of each feature. Instead of
simply counting the associations of a feature with clas-
sification outcome, we track the amount of information
(new knowledge) that is gained by inclusion of a particular
feature. Intuitively, it calculates the number of bits of
information that is learned about the behavior of the feature
when its selected to train a classifier model. The more bits
a feature contributes, the higher its relative importance.

• Relief: (R function relief) This is well-suited for binary
classification problems like the one explored in this paper.
It operates by evaluating a distance d() score for each
CAD run with other runs with fewest variations in the
CAD parameter selections. This is then used to calculate
a relevance score.

• Ensemble: (R function ensemble) As no single feature
selection algorithm is likely to be optimal in all cases [9], we
also consider an ensemble approach by combining multiple
selectors and computing a mean score for each feature. As
we show later in Section IV (Figure 8), the ensemble-
based feature selector outperforms the other three individual
approaches listed above.
Classification is the procedure used to determine whether a

given combination of CAD parameters yields a GOOD timing
score. A challenge for most classifiers is to operate in presence
of limited samples (30 iterations per round). Once important
features have been suitably ranked and used to train a model,
we must consider the interaction of design characteristics
with properties of the classification algorithm for delivering
robust performance. In [13], we evaluate a variety of routines
such as Logistic regression (glm), Bagging (treebag),
Random Forest (rf), Support Vector Machine (SVM)
(svmRadial), Neural Network (nnet) along with Stack
and Ensemble methods. As we will see later, the exact choice
of the classifier is not nearly as important as the feature-based
ranking and selection of required parameters.

IV. RESULTS

In this section, we present quantitative results of our ex-
periments and briefly explain the experimental setup. We
develop the feature selection and machine learning routines
as plugins for InTime using caret [1] and FSelector [7]
packages in R [6]. The use of these APIs was cross-validated
and optimized for high learning performance while compute
times are insignificant compared to CAD tools runtimes. We
do not expect the end users of InTime to use this interface

TABLE II: Characteristics of Industrial Designs1.

Name LUTs FFs P&R TNS WNS
(% used) mins.

office jpn2 78 107K 100 26.9 7.3
autom jpn 61 108K 136 67.3 7.9
net chn3 73 59K 121 69.1 5.1
net isr1 81 160K 225 3.6 10.5
net isr2 79 158K 194 4.2 8.9
net isr3 75 372K 438 4.7
net chn4 91 14K 44 23.2 13.9
SOC 8 4K 31 23.1 3.4
VIP 67 63K 70 3.1 2.8

1Exact name of design and some details obfuscated to ensure design privacy.
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Fig. 4: Histogram distribution of TNS scores for various
benchmarks. Higher density of distribution close to zero

suggests plenty of opportunity to drive the solution to timing
closure.

and it is only supported for developers of InTime. Within
the InTime flow, we rerun feature selection at each stage
of the model refinment (i.e. after each round). This means,
that the exact set of features used in the revised model may
be different for each round. We ran our experiments on
a combination of resources including the Google Compute
Engine and internal compute farms. Typically each design
ran for a few days before meeting timing or aborting. A
small number of industrial designs with light pipelining are
unable to meet timing as expected due to abnormally high
TNS and WNS scores. A particularly challenging design was
the 390 MHz UDP offload accelerator that was already deeply
pipelined and provided very little slack to start with. Most of
our designs are generally of this nature. In Table II, we list
the key characteristics of the industrial benchmarks used in
this study. They cover a wide range of application scenarios
such as wired networking, image processing, as well as SoC
designs. These benchmarks are compiled using a combination
of Quartus 14.1 and Vivado 2015.2 and mapped to the a
range of large Ultrascale Virtex and Stratix V devices. InTime
uses the default settings in these CAD tools to extract the
initial baseline for use in the classification process. We show
a density distribution of achieved TNS scores for the various
designs in Figure 4. This indicates a spread in achievable TNS
scores and in some cases even the opportunity for exceeding
the timing target. Most designs have a clear peak which is
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close to the average performance of the design under nominal
CAD parameter settings. Since our machine learning approach
is adaptive, the precise starting condition does not matter to
eventual convergence. For these benchmarks, in Figure 5, we
observe how InTime consistently reduces total negative slack
(TNS) close to zero within 120 iterations. A few benchmarks
did not meet timing – (1) The net_isr3 design started
with an unrealistic initial TNS score of 10000 ps and did
not converge. That design has to be pipelined adequately
prior to using InTime. (2) The SOC design ran the longest
and showed practically no improvements in TNS scores. This
design exhibited stubborn timing paths that are constrained by
the limits of the device than FPGA CAD margins.

We now define important metrics used to evaluate the
efficacy of our machine learning framework:
• ROC:(Receiver Operating Characteristics): Visually, we

can compare various approaches with the ROC curve that
plots TPR (True Positive Rate) against FPR (False posi-
tive Rate). Here, we want to be in the upper left quadrant
of the curve with high TPR and low FPR values.

• Area Under Curve (AUC): AUC is the area under the
ROC curve and provides a fair estimation of classification
accuracy by discounting rate of misinterpretation. A high
AUC value indicates that a model with high true positive
rate and low false positive is achievable. AUC of 1 is perfect
and AUC of 0.5 is effectively an unbiased random coin toss.

• Entropy: Mathematically, entropy is defined as S =P
i pi · log2(pi) where i is the CAD parameter, and pi is

the probability that a given parameter is set. High values
of entropy indicates a greater extent of randomness in the
system. An entropy value of 0 indicates that a single set of
values are assigned to the parameters in all CAD runs.

A. Necessity of Learning

In Figure 6, we show the entropy of the system when consid-
ering the set of experiments covered and the resulting solution
values. High values of entropy suggests that InTime covered
a wide range of distinct parameter combinations during its
search. When considering the entropy of the combinations that
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Fig. 6: Entropy of the explored CAD parameter combinations
and the dissimilarity of optimal parameter combinations
needed for timing convergence (column combined).

overall corresponds to all CAD runs, while good.half
corresponds to the TNS-improving combinations.

.

delivered the best TNS scores (i.e. timing convergence), the
resulting entropy is still quite high, see combined bar in the
plot. This confirms our hypothesis that the optimal solutions
have sufficient divergence and cannot be trivially clustered
into small set of bins. Thus, machine learning is crucial to
delivering timing convergence as we need to tailor the search
per design and identify the unique parameter combination that
are needed by that design.

To further cement this understanding, we evaluate the degree
of similarity between the final parameter combinations for the
various designs in Figure 7. Here, we plot a matrix (heatplot)
of scores that show the extent of dissimilarity between the
final parameter combinations for various designs. The more
dissimilar the final parameter combinations, the corresponding
box will be darker (diagonal is white as its perfectly self-
similar). To plot this figure, we extract the combinations per
design that yield the best TNS scores (timing closure) and
compute the overlap between these choices across designs. We
pairwise compare the designs and visualize the resulting scores
in the heatplot shown. As it clear, barring a few cases we
observe 40–60% dissimilarity in most scenarios. This means
that 40–60% of the parameter values were differently chosen
to deliver timing closure for the two designs. Thus, the final
results have no clear correlations and coupled with the higher
entropies observed in Figure 6, make it evident that we need
design-specific customization and machine learning to drive
the search.

B. Understanding Effectiveness of Feature Selection

Unlike the original InTime approach, we use design-specific
feature selection as a first step, prior to training, to help
improve the quality of the prediction. In Figure 8, we show
the overall AUC scores achieved by performing intelligent
feature selection on the medical_jpn benchmark before
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Naı̈ve Bayes classification. This shows that with as few as 8–
10 features we can already achieve high classification scores
of 0.8 AUC and higher. The ensemble approach permits
us to use only eight features to achieve high scores. Across
different benchmarks, ensemble provided robust superior
performance. We use this approach for subsequent analysis.

We investigate the effects of proper selection of feature
counts and training size for the net_chn4 benchmark in
Figure 9. We observe a Goldilocks zone of 8–22 features at
which the AUC values are maximized. Too few features or
too many features result in poor classification quality. The
larger balloons also show a clear trend favoring more data for
improving prediction quality when using the ideal number of
features. Even in presence of limited samples, we are still able
to observe high AUC values in the Goldilocks zone.

We also seek to understand the simplicity of convergence
and combination of feature counts and training sizes that
delivers closure. Hence, we perform a sensitivity analysis of
feature size and training size to understand when best results
are achieved. We need to know if there are certain combina-
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in low AUC scores of 0.5–0.6. Too many features result in a

dropoff in AUC scores again. Goldilocks range of features
8-22 deliver high AUC scores of 0.7–0.8.

tions to avoid from the perspective of eventual convergence.
In Figure 10, we plot all possible combinations of features
and training sample counts that result in a predictive model
with an AUC>0.8 to show the effectiveness of our approach.
As the right half (and particularly lower right) of the plot is
nearly empty, this suggests training with all available features
will not deliver a good predictive model. Instead, if we use
a 10–20 features to run the machine learning routines, we
see a high density of feasible high-AUC configurations. In
particular, even with few training samples, we are able to train
high quality models, which is highly relevant for FPGA CAD
runs as they are typically slow and training data is expensive
to generate.
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Fig. 12: Impact of Training Samples on AUC scores for
Naı̈ve Bayes Technique. As expected, more training samples
result in better prediction. Most designs converge in 50–100
runs, SOC runs for 200+ iterations and does not close timing

(see Figure 5).

C. Understanding Effectiveness of Learning

When comparing machine learning algorithms, we are inter-
ested in understanding the metrics for these techniques under
limited number of training samples as well as a pruned set
of attributes (CAD tool parameters). In Fig. 12, we show
these trends for the representative Naı̈ve Bayes approach. Each
circuit needs a minimum set of samples to start effective
classification (⇡ 20–30 samples). As we increase the number
of samples, we observe an improvement in AUC scores. In
most cases, it took around 40 samples to build a trustworthy
model; and AUC score seemed to converge at around 90
training sample. InTime runs 30 CAD instances in each round.
We see improvements approximately up to 5-6 rounds (150-
180 runs), and beyond those we see saturation or early timing

closure (hence a few missing points). To clearly understand
the relative benefits of our new classification approach over
the baseline InTime technique, we perform a robust design-
space exploration across the large industrial designs as shown
in Figure 11. Here, we compare the original Naı̈ve Bayes with
our Ensemble approach. It is clear that the ROC curves of
Ensemble models leans towards the top left corner more than
those of the baseline models, which translates into that higher
predictive quality for Ensemble technique.

D. Unifying Classification and Feature Selection

When we consider the combined effect of features selec-
tion and classification together, a somewhat different picture
emerges from the experiment. When simply extending original
InTime approach with more robust classifiers as shown in
Figure 13, the Ensemble approach (ensem) deliver higher
AUC scores of 0.8 over the original baseline score of 0.74.
This is promising as it helps reduce the number of CAD
runs required to achieve timing closure. However, when we
consider Feature Selection (pruning the set of features to 8–22
features instead of the whole set of ⇡80), we see that the rel-
ative AUC scores of almost all classifiers is now substantially
better. Ensemble approach deliver an AUC score of 0.82 while
Stack and Bagging deliver a marginally higher score of 0.83.
This suggests that design-specific filtering of CAD parameters
prior to classifier model training is crucial and has a greater
impact on the final prediction quality. Having established the
importance of feature selection, it is still worthwhile to note
that the exact classifier that delivers best performance for a
given design is different for each design.

Finally, in Figure 14, we show the reduction factor in
number of CAD iterations when comparing original InTime
baseline against our improved approach. Most iterations for
a given design take similar amount of runtime so a direct
iteration ratio captures the degree of saving in CAD effort.
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Fig. 13: Combining Feature Selection and Classifier
Selection. Largest improvements over baseline are possible

when using Feature Selection followed by Classification. The
different classifiers shown on the x-axis have been

previously explained in [13].

As we see, we are able to deliver a 2–8⇥ reduction in
iteration counts thereby speeding up the delivery of timing
convergence. The SOC design is an exception as it does not
meet timing, but quits early resulting in 8⇥ saving. When
excluding this design, we notice a 2–6⇥ reduction (mean 3⇥)
in the number of iterations. This shows how exploiting the
unique characteristics of the FPGA design as part of the CAD
flow can not only improve AUC scores but also translate into
wins for acceleration of timing closure.
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Fig. 14: Iteration Count Reduction when using Feature
Selection+Classification vs. original InTime baseline.

V. DISCUSSION

Early on, we observed a preference for design-specific
feature selection as a way to help prune the number of
features used during the training process. This is critical
as each FPGA design has unique characteristics and may
be influenced by a varying subset of CAD parameters. We
subsequently investigated ways to reduce the time to timing
closure and identified ensemble-based methods doing better
than other individual approaches. However, the gap between
the various classification algorithms was not as significant once
we performed feature selection prior to the training phase.

Target Domain Gap Cite

ATLAS Linear-Algebra 92% [12]
µarchitecture Comp. Arch. 10⇥ [5]
gcc Compilers C/C++ 20% [11]
VPR FPGA Arch. 17–110% [8]
Soft-Processors Comp. Arch. 17⇥ [10]
HLS LLVM C/C++ 16% [2]

TABLE III: Related Work

In Table III, we highlight other allied domains where intel-
ligent heuristics have been applied to optimize a mapping and
report the extent of optimizations that were uncovered through
the use of such intelligent exploration. In [12], a design-
space exploration is performed to optimize scientific comput-
ing code for specific supercomputing architectures to enable
high-performance library implementations on those platforms.
[5] shows how to prune the search space of µarchitecture
design for complex modern processor pipelines using machine
learning heuristics. In [11], the output of gcc compilations are
optimized by tweaking compiler switches using machine learn-
ing to guide the performance tuning. The open-source FPGA
development tool vpr is amenable to solution optimization by
exploring various parameters in the underlying heuristics [8].
A Design of Experiments approach used in [10] for optimizing
various soft processor organizations unlocks a large potential
for possible improvements and shows how to systematically
exploit it. The effect of compiler optimizations on the quality
of generated RTL code was explored in the context of the
LegUp [2] compiler. Our work targets the rising complexity of
the modern FPGA CAD toolchain by using machine learning
heuristics to deliver timing closure for different designs.

VI. CONCLUSIONS

InTime is a machine-learning based plugin for FPGA CAD
tools that automates the delivery of timing closure for FPGA
designs. In this paper, we significantly improve the prediction
quality of the machine learning flow by combining design-
specific feature selection with classification. Each FPGA de-
sign exhibits unique timing characteristics that can be ex-
ploited to select the most relevant subset of CAD parameters
(features) for training a high quality classifier. Using this
approach, we are able to reduce the number of required fea-
tures down to 8–22 features for most designs (75% reduction
in model complexity) while boosting the AUC (area under
ROC curve) scores for the classifier from 74% to 83%. This
directly translates into 3⇥ mean reduction in the number of
CAD iterations required to build the classifier model thereby
delivering faster timing closure with fewer CAD iterations. As
part of future work, we seek to build post-synthesis models
that help drive timing convergence using design-style specific
recipes in addition to pruning the feature set.
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